Increased endoplasmic reticulum stress might be related to brain damage in hepatic ischemia-reperfusion injury

被引:0
|
作者
Karademir, Mustafa [1 ]
Dogan, Halef O. [2 ]
Inan, Zeynep Deniz Sahin [3 ]
Dogan, Kuebra [4 ]
Kablan, Demet [2 ]
机构
[1] Sivas Cumhuriyet Univ, Fac Med, Dept Neurosurg, TR-58140 Sivas, Turkiye
[2] Sivas Cumhuriyet Univ, Fac Med, Dept Biochem, Sivas, Turkiye
[3] Sivas Cumhuriyet Univ, Fac Med, Dept Histol & Embryol, Sivas, Turkiye
[4] Sivas Numune State Hosp, Dept Biochem, Sivas, Turkiye
关键词
ATF-4; brain damage; ER stress; GRP-78; hepatic ischemia-reperfusion;
D O I
10.1515/tjb-2022-0292
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Objectives: Our study aimed to investigate the role of endoplasmic reticulum stress (ER) in brain damage following hepatic ischemia-reperfusion (HIR) injury. Specifically, we characterized the expression of markers of ER stress and histopathologic changes in the brain following HIR. Methods: 12 adults female Wistar rats were divided into two experimental groups equally. Group 1 was designed as the control group, and Group 2 was designed as the HIR group. Blood, liver, and brain tissue samples were collected during the sacrifice. The quantitative ELISA kits were used to detect glucose-regulated protein 78 (GRP-78), activating transcription factor 4 (ATF- 4), eukaryotic initiation factor 2 alpha (EIF2-A), caspase-3, caspase-9, and CCAAT/enhancer-binding protein (CEBP) in plasma. Histopathological examination was performed for liver and brain tissues. Results: Higher levels of GRP-78 (p=0.006), ATF-4 (p=0.001), and EIF2-A (p=0.007) were detected in group 2. More damage was detected in liver and brain samples in the histopathological examination of group 2 than in group 1. Conclusions: Our results demonstrate that ER stress is involved in developing brain damage following hepatic ischemia-reperfusion injury, as evidenced by increased expression of markers of ER stress and neuronal injury.
引用
收藏
页码:432 / 439
页数:8
相关论文
共 50 条
  • [1] Effect of endoplasmic reticulum stress on endothelial ischemia-reperfusion injury in humans
    Hemingway, Holden W.
    Moore, Amy M.
    Olivencia-Yurvati, Albert H.
    Romero, Steven A.
    AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2020, 319 (06) : R666 - R672
  • [2] The Dichotomy of Endoplasmic Reticulum Stress Response in Liver Ischemia-Reperfusion Injury
    Zhou, Haomming
    Zhu, Jianjun
    Yue, Shi
    Lu, Ling
    Busuttil, Ronald W.
    Kupiec-Weglinski, Jerzy W.
    Wang, Xuehao
    Zhai, Yuan
    TRANSPLANTATION, 2016, 100 (02) : 365 - 372
  • [3] Research progress in the role of endoplasmic reticulum stress in cerebral ischemia-reperfusion injury
    ZHANG Qi
    HAO Luge
    ZHANG Shengxiao
    SHI Caiyun
    LI Wei
    中国药理学与毒理学杂志, 2023, 37 (07) : 509 - 509
  • [4] The role of microRNAs regulation of endoplasmic reticulum stress in ischemia-reperfusion injury: A review
    Liu, Wanying
    Zhang, Qi
    Guo, Shiyun
    Wang, Honggang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 283
  • [5] cFLIPL Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress
    Yun Zhao Li
    Hui Wu
    Di Liu
    Jun Yang
    Jian Yang
    Jia Wang Ding
    Gang Zhou
    Jing Zhang
    Dong Zhang
    Cardiovascular Drugs and Therapy, 2023, 37 : 225 - 238
  • [6] Esomeprazole inhibits endoplasmic reticulum stress and ameliorates myocardial ischemia-reperfusion injury
    Zhou, Guoxiang
    Peng, Yuce
    Guo, Mingyu
    Qu, Can
    Luo, Suxin
    Jiang, Yingjiu
    Chen, Dan
    Wang, Xiaowen
    Guo, Yongzheng
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 627 : 84 - 90
  • [7] cFLIPL Alleviates Myocardial Ischemia-Reperfusion Injury by Inhibiting Endoplasmic Reticulum Stress
    Li, Yun Zhao
    Wu, Hui
    Liu, Di
    Yang, Jun
    Yang, Jian
    Ding, Jia Wang
    Zhou, Gang
    Zhang, Jing
    Zhang, Dong
    CARDIOVASCULAR DRUGS AND THERAPY, 2023, 37 (02) : 225 - 238
  • [8] Erythropoietin Derived Peptide Improved Endoplasmic Reticulum Stress and Ischemia-Reperfusion Related Cellular and Renal Injury
    Zhang, Yufang
    Wang, Qian
    Liu, Aifen
    Wu, Yuanyuan
    Liu, Feng
    Wang, Hui
    Zhu, Tongyu
    Fan, Yaping
    Yang, Bin
    FRONTIERS IN MEDICINE, 2020, 7
  • [9] Oleoylethanolamide Alleviates Hepatic Ischemia-Reperfusion Injury via Inhibiting Endoplasmic Reticulum Stress-Associated Apoptosis
    Qi, Shunli
    Yan, Qi
    Wang, Zhen
    Liu, Deng
    Zhan, Mengting
    Du, Jian
    Chen, Lijian
    PPAR RESEARCH, 2022, 2022
  • [10] Novel Insight into the Role of Endoplasmic Reticulum Stress in the Pathogenesis of Myocardial Ischemia-Reperfusion Injury
    Zhu, Hang
    Zhou, Hao
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021