Ultrafast Strategy to Fabricate Sulfur Cathodes for High-Performance Lithium-Sulfur Batteries

被引:4
|
作者
Liu, Kun [1 ,2 ]
Yuan, Huimin [1 ,2 ]
Wang, Xinyang [1 ,2 ]
Ye, Peiyuan [1 ,2 ]
Lu, Binda [1 ,2 ]
Zhang, Junjie [1 ,2 ]
Lu, Wang [1 ,2 ]
Jiang, Feng [1 ,2 ,3 ]
Gu, Shuai [1 ,2 ]
Chen, Jingjing [1 ,2 ]
Yan, Chunliu [1 ,2 ]
Li, Yingzhi [1 ,2 ]
Xu, Zhenghe [1 ,2 ,3 ]
Lu, Zhouguang [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Interfacial Sci & Engn Mat, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Key Univ Lab Highly Efficient Utilizat Solar Energ, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Adv Mat Innovat Ctr, Jiaxing Res Inst, Jiaxing 314031, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur batteries; microwave treatment; bitumen; cathode; Ni2S; CARBON;
D O I
10.1021/acsami.3c04972
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Based on the different dielectric properties of materialsand theselective heating property of microwaves, the ultrafast (30 s) preparationof S-NiS2@SP@Bitu as a cathode material for lithium-sulfurbatteries was achieved using bitumen, sulfur, Super P, and nickelnaphthenate as raw materials for the first time, under microwave treatment.NiS2@SP@Bitu forms Li-N, Li-O, Li-S,and Ni-S bonds with polysulfide, which contributes to promotingthe adsorption of polysulfide, reducing the precipitation and decompositionenergy barrier of Li2S, and accelerating the catalyticconversion of polysulfide, as result of inhibiting the "shuttleeffect" and improving the electrochemical performance. S-NiS2@SP@Bitu as the sulfur cathode material demonstrates outstandingrate performance (518.6 mAh g(-1) at 4C), and stablecycling performance. The lithium-sulfur battery with a sulfurloading of 4.8 mg cm(-2) shows an areal capacity of4.6 mAh cm(-2). Based on the advantages of microwaveselective and rapid heating, this method creatively realized thatthe sulfur carrier material was prepared and sulfur was fixed in itat the same time. Therefore, this method would have implications forthe preparation of sulfur cathode materials.
引用
收藏
页码:31478 / 31490
页数:13
相关论文
共 50 条
  • [11] MXenes in sulfur cathodes for lithium-sulfur batteries
    Wong, Andrew Jun Yao
    Lieu, Wei Ying
    Yang, Hui Ying
    Seh, Zhi Wei
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (22) : 3890 - 3905
  • [12] Cubic MnSe2 microcubes enabling high-performance sulfur cathodes for lithium-sulfur batteries
    Bao, Jian
    Yue, Xin-Yang
    Luo, Rui-Jie
    Zhou, Yong-Ning
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (22) : 5699 - 5706
  • [13] Reinforced Conductive Confinement of Sulfur for Robust and High-Performance Lithium-Sulfur Batteries
    Lai, Chao
    Wu, Zhenzhen
    Gu, Xingxing
    Wang, Chao
    Xi, Kai
    Kumar, R. Vasant
    Zhang, Shanqing
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (43) : 23885 - 23892
  • [14] A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries
    Zeng, Shuaibo
    Li, Xin
    Guo, Fei
    Zhong, Hai
    Mai, Yaohua
    ELECTROCHIMICA ACTA, 2019, 320
  • [15] High Loading Sulfur Cathodes by Reactive-Type Polymer Tubes for High-Performance Lithium-Sulfur Batteries
    Zhang, Kun
    Li, Xing
    Yang, Yong
    Chen, Zhongxin
    Ma, Li
    Zhao, Yaohua
    Yuan, Yijia
    Chen, Fangzheng
    Wang, Xiaowei
    Xie, Keyu
    Loh, Kian Ping
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (11)
  • [16] Investigation and Design of High-Loading Sulfur Cathodes with a High-Performance Polysulfide Adsorbent for Electrochemically Stable Lithium-Sulfur Batteries
    Huang, Yi-Chen
    Hsiang, Hsing-, I
    Chung, Sheng-Heng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, : 9254 - 9264
  • [17] 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries
    Liu, Yu-Hong
    Wang, Cao-Yu
    Yang, Si-Lin
    Cao, Fei-Fei
    Ye, Huan
    JOURNAL OF ENERGY CHEMISTRY, 2022, 66 : 429 - 439
  • [18] Concrete-like high sulfur content cathodes with enhanced electrochemical performance for lithium-sulfur batteries
    Bolan Gan
    Kaikai Tang
    Yali Chen
    Dandan Wang
    Na Wang
    Wenxian Li
    Yong Wang
    Hao Liu
    Guoxiu Wang
    Journal of Energy Chemistry, 2020, 42 (03) : 174 - 179
  • [19] A Step-by-Step Design Strategy to Realize High-Performance Lithium-Sulfur Batteries
    Dent, Matthew J.
    Grabe, Sean
    Hinder, Steven J.
    Masteghin, Mateus G.
    Whiting, James D.
    Watts, John F.
    Lekakou, Constantina
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (03): : 1492 - 1506
  • [20] High performance bimetal sulfides for lithium-sulfur batteries
    Lu, Xianlu
    Zhang, Qingfeng
    Wang, Jue
    Chen, Suhua
    Ge, Junmin
    Liu, Zhaomeng
    Wang, Longlu
    Ding, Hongbo
    Gong, Decai
    Yang, Hongguan
    Yu, Xinzhi
    Zhu, Jian
    Lu, Bingan
    CHEMICAL ENGINEERING JOURNAL, 2019, 358 : 955 - 961