Optical solitary wave solutions in generalized determinant form for Kundu-Eckhaus equation

被引:0
作者
Yue, Gui-Min [1 ]
Meng, Xiang-Hua [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; Generalized double Wronskian solution; Determinant element relationship; Solitary wave solution; MODULATIONAL INSTABILITY; BIREFRINGENT FIBERS; BILINEAR FORM; SOLITONS; HIERARCHY; BREATHERS;
D O I
10.1016/j.rinp.2023.106474
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Kundu-Eckhaus (KE) equation describes the propagation of ultra-short femtosecond pulses in optical fibers. In this paper, on the basis of Hirota bilinear form of KE equation, a complex matrix is introduced into the differential relation satisfied by determinant elements. By constructing relations among the matrix elements, the solution in generalized double Wronskian determinant form for the KE equation is derived. When the complex matrix introduced in the differential relation of the determinant elements take diagonal matrix and Jordan block matrix respectively, the soliton solutions and Jordan block solutions of the KE equation are obtained and propagation situations are discussed via different parameters.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Optical solitons in birefringent fibers with Kundu-Eckhaus equation [J].
Biswas, Anjan ;
Arshed, Saima ;
Ekici, Mehmet ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Alfiras, Mohanad ;
Belic, Milivoj .
OPTIK, 2019, 178 :550-556
[2]   Optical solitons with differential group delay for coupled Fokas-Lenells equation using two integration schemes [J].
Biswas, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Zhou, Qin ;
Mahmood, Mohammad F. ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 165 :74-86
[3]   Sub pico-second pulses in mono-mode optical fibers with Kaup-Newell equation by a couple of integration schemes [J].
Biswasa, Anjan ;
Yildirim, Yakup ;
Yasar, Emrullah ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 167 :121-128
[4]   Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers: Numerical study [J].
Brainis, E ;
Amans, D ;
Massar, S .
PHYSICAL REVIEW A, 2005, 71 (02)
[5]   NONLINEAR EVOLUTION-EQUATIONS, RESCALINGS, MODEL PDES AND THEIR INTEGRABILITY .1. [J].
CALOGERO, F ;
ECKHAUS, W .
INVERSE PROBLEMS, 1987, 3 (02) :229-262
[6]   Drifting breathers and Fermi-Pasta-Ulam paradox for water waves [J].
Chabchoub, A. ;
Hoffmann, N. ;
Tobisch, E. ;
Waseda, T. ;
Akhmediev, N. .
WAVE MOTION, 2019, 90 :168-174
[7]   Solutions of the nonlocal nonlinear Schrodinger hierarchy via reduction [J].
Chen, Kui ;
Zhang, Da-jun .
APPLIED MATHEMATICS LETTERS, 2018, 75 :82-88
[8]   PAINLEVE ANALYSIS OF THE NONLINEAR SCHRODINGER FAMILY OF EQUATIONS [J].
CLARKSON, PA ;
COSGROVE, CM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08) :2003-2024
[9]   DYNAMICS OF INDUCED MODULATIONAL INSTABILITY IN WAVE-GUIDES WITH SATURABLE NONLINEARITY [J].
DADALT, N ;
DEANGELIS, C ;
NALESSO, GF ;
SANTAGIUSTINA, M .
OPTICS COMMUNICATIONS, 1995, 121 (1-3) :69-72
[10]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3