LYAPUNOV INSTABILITY IN KAM STABLE HAMILTONIANS WITH TWO DEGREES OF FREEDOM

被引:1
作者
Trujillo, Frank [1 ,2 ]
机构
[1] Univ Paris Cite, IMJ, PRG, F-75205 Paris 13, France
[2] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Hamiltonian dynamics; nearly integrable; KAM theory; invariant tori; stability; STABILITY;
D O I
10.3934/jmd.2023010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a fixed frequency vector omega is an element of R2 a {0} obeying omega 1 omega 2 < 0, we show the existence of Gevrey-smooth Hamiltonians, arbitrarily close to an integrable Kolmogorov non-degenerate analytic Hamiltonian, having a Lya-punov unstable elliptic equilibrium with frequency omega. In particular, the el-liptic fixed points thus constructed will be KAM stable, i.e., accumulated by invariant tori whose Lebesgue density tend to one in the neighborhood of the point and whose frequencies cover a set of positive measure.Similar examples for near-integrable Hamiltonians in action-angle coor-dinates, in the neighborhood of a Lagrangian invariant torus with arbitrary frequency vector, are also given in this work.
引用
收藏
页码:363 / 383
页数:21
相关论文
共 14 条
[1]  
Arnold V.I., 2006, Mathematical Aspects of Classical and Celestial Mechanics, DOI [10.1007/978-3-540-48926-9, DOI 10.1007/978-3-540-48926-9]
[2]  
ARNOLD VI, 1964, DOKL AKAD NAUK SSSR+, V156, P9
[3]  
ARNOLD VI, 1961, DOKL AKAD NAUK SSSR+, V137, P255
[4]   Superexponential Stability of Quasi-Periodic Motion in Hamiltonian Systems [J].
Bounemoura, Abed ;
Fayad, Bassam ;
Niederman, Laurent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 350 (01) :361-386
[5]  
Bruno A. D., 1989, DYNAMICAL SYSTEMS ER, V23, P361
[6]  
Fayad B., 2019, LYAPUNOV UNSTABLE EL
[7]  
GEVREY M., 1918, Ann. Sci. Ec. Norm. Super, V35, P129
[8]  
Marco JP, 2003, PUBL MATH, P199
[9]  
MOSER JK, 1968, MEM AM MATH SOC, P1
[10]  
Nekhoroshev N. N., 1977, Russ. Math. Surv., V32, P1, DOI DOI 10.1070/RM1977V032N06ABEH003859