Elliptic inequalities with nonlinear convolution and Hardy terms in cone-like domains

被引:0
作者
Ghergu, Marius [1 ,2 ]
Yu, Zhe [1 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin, Ireland
[2] Romanian Acad, Inst Math Sim Stoilow, 21 Calea Grivitei St, Bucharest 010702, Romania
关键词
Semilinear elliptic inequalities; Hardy terms; Nonlinear convolution term; Cone-like domains; A priori estimates; POSITIVE SOLUTIONS; WAVE MECHANICS; EQUATIONS; NONEXISTENCE; ATOM;
D O I
10.1016/j.jmaa.2023.127329
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inequality -Delta u - mu|x|2u > (|x|-alpha * up)uq in an unbounded cone C rho omega subset of RN (N > 2) generated by a subdomain omega of the unit sphere SN-1 subset of RN, p, q, rho > 0, mu E R and 0 < alpha < N. In the above, |x|-alpha * up denotes the standard convolution operator in the cone C rho omega. We discuss the existence and nonexistence of positive solutions in terms of N, p, q, alpha, mu and omega. Extensions to systems of inequalities are also investigated.(c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:21
相关论文
共 27 条
  • [1] Alexandrov AS, 2010, SPRINGER SER SOLID-S, V159, P1, DOI 10.1007/978-3-642-01896-1
  • [2] ON POSITIVE SOLUTIONS OF EMDEN EQUATIONS IN CONE-LIKE DOMAINS
    BANDLE, C
    ESSEN, M
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (04) : 319 - 338
  • [3] Bandle C., 1992, PROG NONLINEAR DIFFE, V7, P71
  • [4] Nonexistence results and estimates for some nonlinear elliptic problems
    Bidaut-Véron, MF
    Pohozaev, S
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1): : 1 - 49
  • [5] Chen HY, 2023, ADV DIFFERENTIAL EQU, V28, P35
  • [6] Isolated singularities of positive solutions for Choquard equations in sublinear case
    Chen, Huyuan
    Zhou, Feng
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2018, 20 (04)
  • [7] Classification of isolated singularities of positive solutions for Choquard equations
    Chen, Huyuan
    Zhou, Feng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (12) : 6668 - 6698
  • [8] Ghergu M., 2016, ISOLATED SINGULARITI
  • [9] Ghergu M., 2022, SpringerBriefs in Mathematics
  • [10] Polyharmonic inequalities with nonlocal terms
    Ghergu, Marius
    Miyamoto, Yasuhito
    Moroz, Vitaly
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 296 : 799 - 821