Multiple moving agents on complex networks: From intermittent synchronization to complete synchronization

被引:7
|
作者
Weng, Tongfeng [1 ]
Chen, Xiaolu [2 ]
Ren, Zhuoming [1 ]
Xu, Jin [1 ]
Yang, Huijie [2 ]
机构
[1] Hangzhou Normal Univ, Inst Informat Econ, Alibaba Business Coll, Hangzhou 311121, Peoples R China
[2] Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple moving agents; Complex networks; Synchronization; Correlation dimension; POPULATIONS; DYNAMICS;
D O I
10.1016/j.physa.2023.128562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate multiple moving agents on complex networks. Each of them takes a random walk strategy and carries a chaotic oscillator. Remarkably, we find that with increasing the number of agents, a significant transition occurs from intermittent synchronization to complete synchronization. In particular, we observe that the distribution of laminar length presents a clearly power-law behavior in the intermittent synchronization stage. While reaching a complete synchronization state, correlation dimension and recurrence time statistics of synchronous orbits are in excellent agreement with that of their carrying chaotic system under consideration. Our work reveals that the number of moving agents has a profound effect on shaping synchronization behaviors.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Complex networks exhibit intermittent synchronization
    Vera-Avila, V. P.
    Sevilla-Escoboza, J. R.
    Leyva, I.
    CHAOS, 2020, 30 (10)
  • [2] Synchronization of multiple mobile reservoir computing oscillators in complex networks
    Weng, Tongfeng
    Chen, Xiaolu
    Ren, Zhuoming
    Yang, Huijie
    Zhang, Jie
    Small, Michael
    CHAOS SOLITONS & FRACTALS, 2023, 177
  • [3] Synchronization in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Kurths, Jurgen
    Moreno, Yamir
    Zhou, Changsong
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03): : 93 - 153
  • [4] Synchronization of complex networks coupled by periodically intermittent noise
    Li, Shuang
    Yan, Huiyun
    Li, Jiaorui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2016, 30 (10):
  • [5] Synchronization in Complex Delayed Dynamical Networks with Intermittent Coupling
    Zhang, Hua
    Xiang, Lan
    Wu, Quanjun
    Zhou, Jin
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 1985 - +
  • [6] Transition from non-synchronization to synchronization of complex networks
    Lu, Xin Biao
    Qin, Bu Zhi
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (24) : 5024 - 5028
  • [7] Synchronization of Multi-Layer Networks: From Node-to-Node Synchronization to Complete Synchronization
    Wang, Peijun
    Wen, Guanghui
    Yu, Xinghuo
    Yu, Wenwu
    Huang, Tingwen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (03) : 1141 - 1152
  • [8] Synchronization processes in complex networks
    Arenas, Alex
    Diaz-Guilera, Albert
    Perez-Vicente, Conrad J.
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 224 (1-2) : 27 - 34
  • [9] Adaptive synchronization of complex networks
    De Lellis, P.
    Di Bernardo, M.
    Sorrentino, F.
    Tierno, A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (08) : 1189 - 1218
  • [10] Generalized synchronization of complex networks
    Shang, Yun
    Chen, Maoyin
    Kurths, Juergen
    PHYSICAL REVIEW E, 2009, 80 (02):