Exogenous succinate impacts mouse brown adipose tissue mitochondrial proteome and potentiates body mass reduction induced by liraglutide

被引:11
作者
Gaspar, Rodrigo S. [1 ,2 ]
Delafiori, Jeany [3 ]
Zuccoli, Giuliana [4 ]
Carregari, Victor Corasolla [4 ]
Prado, Thais P. [1 ]
Morari, Joseane [1 ]
Sidarta-Oliveira, Davi [1 ]
Solon, Carina S. [1 ]
Catharino, Rodrigo R. [3 ]
Araujo, Eliana P. [1 ]
Martins-de-Souza, Daniel [4 ,5 ,6 ,7 ]
Velloso, Licio A. [1 ,2 ]
机构
[1] Univ Estadual Campinas, Lab Cell Signaling Obes, Obes & Comorbid Res Ctr, Campinas, Brazil
[2] Natl Inst Sci & Technol Neuroimmunomodulat, Rio De Janeiro, Brazil
[3] Univ Estadual Campinas, Sch Pharmaceut Sci, INNOVARE Biomarkers Lab, Campinas, Brazil
[4] Univ Estadual Campinas, Inst Biol, Lab Neuroprote, Campinas, Brazil
[5] DOr Inst Res & Educ, Sao Paulo, Brazil
[6] Univ Estadual Campinas, Expt Med Res Cluster EMRC, Campinas, Brazil
[7] Natl Council Sci & Technol Dev, Natl Inst Biomarkers Neuropsychiat, Sao Paulo, Brazil
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2023年 / 324卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
fatty acid; metabolomics; mitochondria; obesity; proteomics; GAPDH EXPRESSION; RAT; THERMOGENESIS; DEHYDROGENASE; INDUCTION; PYRUVATE; LACTATE; GLUCOSE;
D O I
10.1152/ajpendo.00231.2022
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is cur-rently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical phar-macological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduc-tion, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succi-nate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction. NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting par-ticularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 re-ceptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.
引用
收藏
页码:E226 / E240
页数:15
相关论文
共 60 条
[1]   Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide [J].
Astrup, A. ;
Carraro, R. ;
Finer, N. ;
Harper, A. ;
Kunesova, M. ;
Lean, M. E. J. ;
Niskanen, L. ;
Rasmussen, M. F. ;
Rissanen, A. ;
Rossner, S. ;
Savolainen, M. J. ;
Van Gaal, L. .
INTERNATIONAL JOURNAL OF OBESITY, 2012, 36 (06) :843-854
[2]   Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study [J].
Astrup, Arne ;
Rossner, Stephan ;
Van Gaal, Luc ;
Rissanen, Aila ;
Niskanen, Leo ;
Al Hakim, Mazin ;
Madsen, Jesper ;
Rasmussen, Mads F. ;
Lean, Michael E. J. .
LANCET, 2009, 374 (9701) :1606-1616
[3]   Whole blood ACTB, B2M and GAPDH expression reflects activity of inflammatory bowel disease, advancement of colorectal cancer, and correlates with circulating inflammatory and angiogenic factors: Relevance for real-time quantitative PCR [J].
Bednarz-Misa, Iwona ;
Neubauer, Katarzyna ;
Zacharska, Ewa ;
Kapturkiewicz, Bartosz ;
Krzystek-Korpacka, Matgorzata .
ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 29 (05) :547-556
[4]   GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK [J].
Beiroa, Daniel ;
Imbernon, Monica ;
Gallego, Rosalia ;
Senra, Ana ;
Herranz, Daniel ;
Villarroya, Francesc ;
Serrano, Manuel ;
Ferno, Johan ;
Salvador, Javier ;
Escalada, Javier ;
Dieguez, Carlos ;
Lopez, Miguel ;
Fruehbeck, Gema ;
Nogueiras, Ruben .
DIABETES, 2014, 63 (10) :3346-3358
[5]   Succinate dehydrogenase and fumarate reductase from Escherichia coli [J].
Cecchini, G ;
Schröder, I ;
Gunsalus, RP ;
Maklashina, E .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2002, 1553 (1-2) :140-157
[6]   GAPDH Expression Predicts the Response to R-CHOP, the Tumor Metabolic Status, and the Response of DLBCL Patients to Metabolic Inhibitors [J].
Chiche, Johanna ;
Reverso-Meinietti, Julie ;
Mouchotte, Annabelle ;
Rubio-Patino, Camila ;
Mhaidly, Rana ;
Villa, Elodie ;
Bossowski, Jozef P. ;
Proics, Emma ;
Grima-Reyes, Manuel ;
Paquet, Agnes ;
Fragaki, Konstantina ;
Marchetti, Sandrine ;
Briere, Josette ;
Ambrosetti, Damien ;
Michiels, Jean-Francois ;
Molina, Thierry Jo ;
Copie-Bergman, Christiane ;
Lehmann-Che, Jacqueline ;
Peyrottes, Isabelle ;
Peyrade, Frederic ;
de Kerviler, Eric ;
Taillan, Bruno ;
Garnier, Georges ;
Verhoeyen, Els ;
Paquis-Flucklinger, Veronique ;
Shintu, Laetitia ;
Delwail, Vincent ;
Delpech-Debiais, Celine ;
Delarue, Richard ;
Bosly, Andre ;
Petrella, Tony ;
Brisou, Gabriel ;
Nadel, Bertrand ;
Barbry, Pascal ;
Mounier, Nicolas ;
Thieblemont, Catherine ;
Ricci, Jean-Ehrland .
CELL METABOLISM, 2019, 29 (06) :1243-+
[7]  
Chong J, 2019, CURR PROTOC BIOINFOR, V68, P86, DOI [10.1002/cpbi86, DOI 10.1002/CPBI86]
[8]   Ethacrynic acid targets GSTM1 to ameliorate obesity by promoting browning of white adipocytes [J].
Cui, Zhaomeng ;
Liu, Yang ;
Wan, Wei ;
Xu, Yuyan ;
Hu, Yehui ;
Ding, Meng ;
Dou, Xin ;
Wang, Ruina ;
Li, Hailing ;
Meng, Yongmei ;
Li, Wei ;
Jiang, Wei ;
Li, Zengxia ;
Li, Yiming ;
Tan, Minjia ;
Ma, Dengke K. ;
Ding, Yu ;
Liu, Jun O. ;
Luo, Cheng ;
Yu, Biao ;
Tang, Qiqun ;
Dang, Yongjun .
PROTEIN & CELL, 2021, 12 (06) :493-501
[9]   Activation of Human Brown Adipose Tissue by a β3-Adrenergic Receptor Agonist [J].
Cypess, Aaron M. ;
Weiner, Lauren S. ;
Roberts-Toler, Carla ;
Elia, Elisa Franquet ;
Kessler, Skyler H. ;
Kahn, Peter A. ;
English, Jeffrey ;
Chatman, Kelly ;
Trauger, Sunia A. ;
Doria, Alessandro ;
Kolodny, Gerald M. .
CELL METABOLISM, 2015, 21 (01) :33-38
[10]   Hypothalamic IRX3: A New Player in the Development of Obesity [J].
de Araujo, Thiago Matos ;
Velloso, Licio A. .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2020, 31 (05) :368-377