Precipitation uncertainty estimation and rainfall-runoff model calibration using iterative ensemble smoothers

被引:1
作者
Zoccatelli, Davide [1 ,2 ]
Wright, Daniel B. [1 ]
White, Jeremy T. [3 ]
Fienen, Michael N. [4 ]
Yu, Guo [5 ]
机构
[1] Univ Wisconsin Madison, Madison, WI USA
[2] Luxembourg Inst Sci & Technol, Esch Sur Alzette, Luxembourg
[3] Intera Inc, Richland, WA USA
[4] US Geol Survey, Middleton, WI USA
[5] Desert Res Inst, Las Vegas, NV USA
关键词
Iterative ensemble smoothers; Precipitation uncertainty; Hydrological modelling; Model calibration; Parameter complexity; CATCHMENT; NETWORK; ERROR; FLOOD;
D O I
10.1016/j.advwatres.2024.104658
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
The introduction of iterative ensemble smoothers (IES) for parameter calibration opens avenues for expanding parameter space in surface water hydrologic modeling. Here, we have introduced independent parameters into a model calibration experiment to estimate errors in rainfall forcing data. This approach has the potential to estimate rainfall errors using other hydrological observations and to improve model calibration. Using highresolution rain gauge data, we estimated "real" rainfall errors across the Turkey River watershed at storm and daily scales. Tests on synthetic and real-world scenarios successfully estimated errors correlated with observed values - even at daily scales. However, a bias remained from model parameter compensation, and identifying errors was challenging for low precipitation and snowfall. Despite synthetic results showing good error correlation, the biases in parameter identification masked potential improvements in hydrological calibration. This study highlights the potential of IES to provide additional information on rainfall errors, even only using streamflow observations.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] Abbas S.A., 2023, Catchment Hydrol./Model. Approaches, DOI [10.5194/hess-2023-127, DOI 10.5194/HESS-2023-127]
  • [2] An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    Ajami, Newsha K.
    Duan, Qingyun
    Sorooshian, Soroosh
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (01)
  • [3] Influence of rainfall observation network on model calibration and application
    Bardossy, A.
    Das, T.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2008, 12 (01) : 77 - 89
  • [4] MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment
    Beck, Hylke E.
    Wood, Eric F.
    Pan, Ming
    Fisher, Colby K.
    Miralles, Diego G.
    van Dijk, Albert I. J. M.
    McVicar, Tim R.
    Adler, Robert F.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (03) : 473 - 502
  • [5] Bengtsson T., 2008, PROBAB STAT, P316, DOI DOI 10.1214/193940307000000518
  • [6] Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification
    Chen, Yan
    Oliver, Dean S.
    [J]. COMPUTATIONAL GEOSCIENCES, 2013, 17 (04) : 689 - 703
  • [7] Ensemble Randomized Maximum Likelihood Method as an Iterative Ensemble Smoother
    Chen, Yan
    Oliver, Dean S.
    [J]. MATHEMATICAL GEOSCIENCES, 2012, 44 (01) : 1 - 26
  • [8] The Abuse of Popular Performance Metrics in Hydrologic Modeling
    Clark, Martyn P.
    Vogel, Richard M.
    Lamontagne, Jonathan R.
    Mizukami, Naoki
    Knoben, Wouter J. M.
    Tang, Guoqiang
    Gharari, Shervan
    Freer, Jim E.
    Whitfield, Paul H.
    Shook, Kevin R.
    Papalexiou, Simon Michael
    [J]. WATER RESOURCES RESEARCH, 2021, 57 (09)
  • [9] Unraveling uncertainties in hydrologic model calibration: Addressing the problem of compensatory parameters
    Clark, MP
    Vrugt, JA
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (06)
  • [10] Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation
    Del Giudice, Dario
    Albert, Carlo
    Rieckermann, Jorg
    Reichert, Peter
    [J]. WATER RESOURCES RESEARCH, 2016, 52 (04) : 3162 - 3186