Timosaponin A3 Induces Anti-Obesity and Anti-Diabetic Effects In Vitro and In Vivo

被引:5
作者
Park, Ji-Hyuk [1 ,2 ]
Jee, Wona [3 ,4 ]
Park, So-Mi [3 ,4 ]
Park, Ye-Rin [3 ,4 ]
Kim, Seok Woo [3 ,4 ]
Bae, Hanbit [3 ,4 ]
Chung, Won-Suk [1 ,2 ]
Cho, Jae-Heung [1 ,2 ]
Kim, Hyungsuk [1 ,2 ]
Song, Mi-Yeon [1 ,2 ]
Jang, Hyeung-Jin [3 ,4 ]
机构
[1] Kyung Hee Univ, Grad Sch, Dept Clin Korean Med, Seoul 02447, South Korea
[2] Kyung Hee Univ, Coll Korean Med, Dept Korean Rehabil Med, Seoul 02447, South Korea
[3] Kyung Hee Univ, Grad Sch, Dept Sci Korean Med, Seoul 02447, South Korea
[4] Kyung Hee Univ, Coll Korean Med, 26 Kyungheedae Ro, Seoul 02447, South Korea
基金
新加坡国家研究基金会;
关键词
anti-diabetic effect; anti-obesity effect; GLP-1; high-fat diet; Jimo; Timosaponin A3; GLUCAGON-LIKE PEPTIDE-1; ACTIVATED PROTEIN-KINASE; ANEMARRHENA-ASPHODELOIDES; INSULIN-SECRETION; GLP-1;
D O I
10.3390/ijms25052914
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Obesity is a serious global health challenge, closely associated with numerous chronic conditions including type 2 diabetes. Anemarrhena asphodeloides Bunge (AA) known as Jimo has been used to address conditions associated with pathogenic heat such as wasting-thirst in Korean Medicine. Timosaponin A3 (TA3), a natural compound extracted from AA, has demonstrated potential therapeutic effects in various disease models. However, its effects on diabetes and obesity remain largely unexplored. We investigated the anti-obesity and anti-diabetic properties of TA3 using in vitro and in vivo models. TA3 treatment in NCI-H716 cells stimulated the secretion of glucagon-like peptide 1 (GLP-1) through the activation of phosphorylation of protein kinase A catalytic subunit (PKAc) and 5 '-AMP-activated protein kinase (AMPK). In 3T3-L1 adipocytes, TA3 effectively inhibited lipid accumulation by regulating adipogenesis and lipogenesis. In a high-fat diet (HFD)-induced mice model, TA3 administration significantly reduced body weight gain and food intake. Furthermore, TA3 improved glucose tolerance, lipid profiles, and mitigated hepatic steatosis in HFD-fed mice. Histological analysis revealed that TA3 reduced the size of white adipocytes and inhibited adipose tissue generation. Notably, TA3 downregulated the expression of lipogenic factor, including fatty-acid synthase (FAS) and sterol regulatory element-binding protein 1c (SREBP1c), emphasizing its potential as an anti-obesity agent. These findings revealed that TA3 may be efficiently used as a natural compound for tackling obesity, diabetes, and associated metabolic disorders, providing a novel approach for therapeutic intervention.
引用
收藏
页数:16
相关论文
共 50 条
[21]   NMDA receptor dependent anti-diabetic effects [J].
Jan Marquard ;
Silke Otter ;
Alena Welters ;
Diran Herebian ;
Fatih Demir ;
Annett Schroeter ;
Olaf Kletke ;
Martin Kragl ;
Daniel Eberhard ;
Barbara Bartosinska ;
Masa Skelin Klemen ;
Andraz Stozer ;
Martin Köhler ;
Alin Stirban ;
Freimut Schliess ;
Tim Heise ;
Stephan Wnendt ;
Marjan Slak Rupnik ;
Per-Olof Berggren ;
Nikolaj Klöcker ;
Thomas Meissner ;
Ertan Mayatepek ;
Eckhard Lammert .
Molecular and Cellular Pediatrics, 1 (Suppl 1)
[22]   Anti-Diabetic Effects and Mechanisms of Dietary Polysaccharides [J].
Ganesan, Kumar ;
Xu, Baojun .
MOLECULES, 2019, 24 (14)
[23]   Effects of anti-diabetic drugs on bone metabolism [J].
Mabilleau, Guillaume ;
Chappard, Daniel ;
Flatt, Peter R. ;
Irwin, Nigel .
EXPERT REVIEW OF ENDOCRINOLOGY & METABOLISM, 2015, 10 (06) :663-675
[24]   Anti-obesity and hypolipidemic effects of black soybean anthocyanins [J].
Kwon, Sun-Hwa ;
Ahn, In-Sook ;
Kim, Su-Ok ;
Kong, Chang-Suk ;
Chung, Hae-Young ;
Do, Myoung-Sool ;
Park, Kun-Young .
JOURNAL OF MEDICINAL FOOD, 2007, 10 (03) :552-556
[25]   Evaluation of anti-diabetic effects of glimepiride/metformin cocrystal [J].
Li, Xiaoli ;
Zhou, Duanfang ;
Liu, Mingpu ;
Zeng, Hongfang ;
Yu, Xiaoping ;
Song, Yi ;
He, Qichen ;
Liu, Xu ;
Zhang, Huan ;
Shen, Zhengze ;
Zhu, Zeng ;
Gu, Mingyan ;
Hu, Xiangnan ;
Zhou, Weiying .
JOURNAL OF DRUG TARGETING, 2025, 33 (03) :397-409
[26]   Research Progress in Anti-Diabetic Effects of Vanadium Compounds [J].
Wei Dan ;
Ding Wenjun ;
Zhou Ju ;
Peng Duan ;
Li Ming .
PROGRESS IN CHEMISTRY, 2009, 21 (05) :896-902
[27]   Isomeric effects of anti-diabetic α-lipoic acid with γ-cyclodextrin [J].
Naito, Yuki ;
Ikuta, Naoko ;
Okano, Ayaka ;
Okamoto, Hinako ;
Nakata, Daisuke ;
Terao, Keiji ;
Matsumoto, Kinuyo ;
Kajiwara, Naemi ;
Yasui, Hiroyuki ;
Yoshikawa, Yutaka .
LIFE SCIENCES, 2015, 136 :73-78
[28]   Anti-Obesity Therapeutic Targets Studied In Silico and In Vivo: A Systematic Review [J].
de Medeiros, Wendjilla F. ;
Gomes, Ana Francisca T. ;
Aguiar, Ana Julia F. C. ;
de Queiroz, Jaluza Luana C. ;
Bezerra, Ingrid Wilza L. ;
da Silva-Maia, Juliana Kelly ;
Piuvezam, Grasiela ;
Morais, Ana Heloneida de A. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (09)
[29]   Anti-Obesity and Antioxidative Effects of Purple Sweet Potato Extract in 3T3-L1 Adipocytes In Vitro [J].
Ju, Jae-Hyun ;
Yoon, Hong-Sup ;
Park, Hyun-Joon ;
Kim, Mi-Young ;
Shin, Hyeun-Kil ;
Park, Kun-Young ;
Yang, Jin-Oh ;
Sohn, Min-Shik ;
Do, Myoung-Sool .
JOURNAL OF MEDICINAL FOOD, 2011, 14 (10) :1097-1106
[30]   CMD-05, a novel promising clinical anti-diabetic drug candidate, in vivo and vitro studies [J].
Ma, Jie ;
Li, Huan ;
Hu, Xiangnan ;
Yang, Lu ;
Chen, Qi ;
Hu, Congli ;
Chen, Zhihao ;
Tian, Xiaoyan ;
Yang, Yang ;
Luo, Ying ;
Gan, Run ;
Yang, Junqing .
SCIENTIFIC REPORTS, 2017, 7