Quantum simulation of excited states from parallel contracted quantum eigensolvers

被引:12
作者
Benavides-Riveros, Carlos L. [1 ,2 ]
Wang, Yuchen [3 ,4 ]
Warren, Samuel [3 ,4 ]
Mazziotti, David A. [3 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR INO, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
excited states; quantum simulation; anti-Hermitian contracted Schrodinger equation; non-unitary transformations; wave function ansatz; contracted quantum eigensolver; DENSITY-FUNCTIONAL THEORY; SCHRODINGER-EQUATION; ALGORITHM;
D O I
10.1088/1367-2630/ad2d1d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computing excited-state properties of molecules and solids is considered one of the most important near-term applications of quantum computers. While many of the current excited-state quantum algorithms differ in circuit architecture, specific exploitation of quantum advantage, or result quality, one common feature is their rooting in the Schrodinger equation. However, through contracting (or projecting) the eigenvalue equation, more efficient strategies can be designed for near-term quantum devices. Here we demonstrate that when combined with the Rayleigh-Ritz variational principle for mixed quantum states, the ground-state contracted quantum eigensolver (CQE) can be generalized to compute any number of quantum eigenstates simultaneously. We introduce two excited-state (anti-Hermitian) CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm, such as its scalability. To showcase our approach, we study several model and chemical Hamiltonians and investigate the performance of different implementations.
引用
收藏
页数:9
相关论文
共 51 条
[31]   The theory of variational hybrid quantum-classical algorithms [J].
McClean, Jarrod R. ;
Romero, Jonathan ;
Babbush, Ryan ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18
[32]   Subspace-search variational quantum eigensolver for excited states [J].
Nakanishi, Ken M. ;
Mitarai, Kosuke ;
Fujii, Keisuke .
PHYSICAL REVIEW RESEARCH, 2019, 1 (03)
[33]   EQUATION FOR DIRECT DETERMINATION OF DENSITY MATRIX [J].
NAKATSUJI, H .
PHYSICAL REVIEW A, 1976, 14 (01) :41-50
[34]   Scalable Quantum Simulation of Molecular Energies [J].
O'Malley, P. J. J. ;
Babbush, R. ;
Kivlichan, I. D. ;
Romero, J. ;
McClean, J. R. ;
Barends, R. ;
Kelly, J. ;
Roushan, P. ;
Tranter, A. ;
Ding, N. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. G. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
Quintana, C. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Coveney, P. V. ;
Love, P. J. ;
Neven, H. ;
Aspuru-Guzik, A. ;
Martinis, J. M. .
PHYSICAL REVIEW X, 2016, 6 (03)
[35]   A variational eigenvalue solver on a photonic quantum processor [J].
Peruzzo, Alberto ;
McClean, Jarrod ;
Shadbolt, Peter ;
Yung, Man-Hong ;
Zhou, Xiao-Qi ;
Love, Peter J. ;
Aspuru-Guzik, Alan ;
O'Brien, Jeremy L. .
NATURE COMMUNICATIONS, 2014, 5
[36]   Efficient variational diagonalization of fully many-body localized Hamiltonians [J].
Pollmann, Frank ;
Khemani, Vedika ;
Cirac, J. Ignacio ;
Sondhi, S. L. .
PHYSICAL REVIEW B, 2016, 94 (04)
[37]   Application of fermionic marginal constraints to hybrid quantum algorithms [J].
Rubin, Nicholas C. ;
Babbush, Ryan ;
McClean, Jarrod .
NEW JOURNAL OF PHYSICS, 2018, 20
[38]   Ensemble Reduced Density Matrix Functional Theory for Excited States and Hierarchical Generalization of Pauli's Exclusion Principle [J].
Schilling, Christian ;
Pittalis, Stefano .
PHYSICAL REVIEW LETTERS, 2021, 127 (02)
[39]   Calculation of Core-Excited and Core-Ionized States Using Variational Quantum Deflation Method and Applications to Photocatalyst Modeling [J].
Shirai, Soichi ;
Horiba, Takahiro ;
Hirai, Hirotoshi .
ACS OMEGA, 2022, 7 (12) :10840-10853
[40]  
Smart SE, 2023, Arxiv, DOI [arXiv:2305.09653, arXiv:2305.09653]