Quantum simulation of excited states from parallel contracted quantum eigensolvers

被引:12
作者
Benavides-Riveros, Carlos L. [1 ,2 ]
Wang, Yuchen [3 ,4 ]
Warren, Samuel [3 ,4 ]
Mazziotti, David A. [3 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR INO, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[4] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
excited states; quantum simulation; anti-Hermitian contracted Schrodinger equation; non-unitary transformations; wave function ansatz; contracted quantum eigensolver; DENSITY-FUNCTIONAL THEORY; SCHRODINGER-EQUATION; ALGORITHM;
D O I
10.1088/1367-2630/ad2d1d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computing excited-state properties of molecules and solids is considered one of the most important near-term applications of quantum computers. While many of the current excited-state quantum algorithms differ in circuit architecture, specific exploitation of quantum advantage, or result quality, one common feature is their rooting in the Schrodinger equation. However, through contracting (or projecting) the eigenvalue equation, more efficient strategies can be designed for near-term quantum devices. Here we demonstrate that when combined with the Rayleigh-Ritz variational principle for mixed quantum states, the ground-state contracted quantum eigensolver (CQE) can be generalized to compute any number of quantum eigenstates simultaneously. We introduce two excited-state (anti-Hermitian) CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm, such as its scalability. To showcase our approach, we study several model and chemical Hamiltonians and investigate the performance of different implementations.
引用
收藏
页数:9
相关论文
共 51 条
[1]   Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :5162-5165
[2]  
Arrasmith A, 2020, Arxiv, DOI arXiv:2004.06252
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States [J].
Bauman, Nicholas P. ;
Liu, Hongbin ;
Bylaska, Eric J. ;
Krishnamoorthy, Sriram ;
Low, Guang Hao ;
Granade, Christopher E. ;
Wiebe, Nathan ;
Baker, Nathan A. ;
Peng, Bo ;
Roetteler, Martin ;
Troyer, Matthias ;
Kowalski, Karol .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (01) :201-210
[5]  
Benavides-Riveros C L., 2023, Quantum simulation of excited states from parallel contracted quantum eigensolvers
[6]   Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach [J].
Benavides-Riveros, Carlos L. ;
Chen, Lipeng ;
Schilling, Christian ;
Mantilla, Sebastian ;
Pittalis, Stefano .
PHYSICAL REVIEW LETTERS, 2022, 129 (06)
[7]   Towards a formal definition of static and dynamic electronic correlations [J].
Benavides-Riveros, Carlos L. ;
Lathiotakis, Nektarios N. ;
Marques, Miguel A. L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (20) :12655-12664
[8]   Progress toward larger molecular simulation on a quantum computer: Simulating a system with up to 28 qubits accelerated by point-group symmetry [J].
Cao, Changsu ;
Hu, Jiaqi ;
Zhang, Wengang ;
Xu, Xusheng ;
Chen, Dechin ;
Yu, Fan ;
Li, Jun ;
Hu, Han-Shi ;
Lv, Dingshun ;
Yung, Man-Hong .
PHYSICAL REVIEW A, 2022, 105 (06)
[9]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[10]   Ensemble Density Functional Theory of Neutral and Charged Excitations Exact Formulations, Standard Approximations, and Open Questions [J].
Cernatic, Filip ;
Senjean, Bruno ;
Robert, Vincent ;
Fromager, Emmanuel .
TOPICS IN CURRENT CHEMISTRY, 2022, 380 (01)