Consistent pairs of s-torsion pairs in extriangulated categories with negative first extensions

被引:0
作者
Liu, Limin [1 ]
Liu, Hongjin [1 ]
机构
[1] Longyan Univ, Sch Math & Informat Engn, Longyan 364012, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 9卷 / 01期
关键词
extriangulated categories; s-torsion pairs; consistent pairs; tau-rigid modules;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As a generalization of a consistent pair of t-structures on triangulated categories, we introduced the notion of a consistent pair of s-torsion pairs in the extriangulated setup. Let (T-i, F-i) be an s-torsion pair in an extriangulated category with a negative first extension for any i = 1, 2. By using the consistent pair, we gave a criterion for (T-1 * T-2, F-1 boolean AND F-2) to be an s-torsion pair. Our results were then applied to the torsion theory induced by tau-rigid modules.
引用
收藏
页码:1494 / 1508
页数:15
相关论文
共 15 条
[1]   Intervals of s-torsion pairs in extriangulated categories with negative first extensions [J].
Adachi, Takahide ;
Enomoto, Haruhisa ;
Tsukamoto, Mayu .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2023, 174 (03) :451-469
[2]   τ-tilting theory [J].
Adachi, Takahide ;
Iyama, Osamu ;
Reiten, Idun .
COMPOSITIO MATHEMATICA, 2014, 150 (03) :415-452
[3]   ALMOST SPLIT-SEQUENCES IN SUBCATEGORIES [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1981, 69 (02) :426-454
[4]   Operations on t-structures and perverse coherent sheaves [J].
Bondal, A. I. .
IZVESTIYA MATHEMATICS, 2013, 77 (04) :651-674
[5]   Extensions of covariantly finite subcategories [J].
Chen, Xiao-Wu .
ARCHIV DER MATHEMATIK, 2009, 93 (01) :29-35
[6]  
Gentle R., 1994, REPRESENTATION THEOR, V18, P227
[7]   Extensions of covariantly finite subcategories revisited [J].
He, Jing .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (02) :403-415
[8]   Proper classes and Gorensteinness in extriangulated categories [J].
Hu, Jiangsheng ;
Zhang, Dongdong ;
Zhou, Panyue .
JOURNAL OF ALGEBRA, 2020, 551 :23-60
[9]   Mutation in triangulated categories and rigid Cohen-Macaulay modules [J].
Iyama, Osamu ;
Yoshino, Yuji .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :117-168
[10]   Triangulated subcategories of extensions, stable t-structures, and triangles of recollements [J].
Jorgensen, Peter ;
Kato, Kiriko .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (12) :5500-5510