Results of Third-Order Strong Differential Subordinations

被引:2
作者
Soren, Madan Mohan [1 ]
Wanas, Abbas Kareem [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] Berhampur Univ Bhanja Bihar, Dept Math, Brahmapur 760007, India
[2] Univ Al Qadisiyah, Coll Sci, Dept Math, Al Diwaniyah 58001, Iraq
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
admissible function; analytic function; strong differential subordination; dominants; multivalent function; SPIRAL-LIKE FUNCTIONS; SUBCLASSES; SUPERORDINATION; CONVEX;
D O I
10.3390/axioms13010042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present and investigate the notion of third-order strong differential subordinations, unveiling several intriguing properties within the context of specific classes of admissible functions. Furthermore, we extend certain definitions, presenting novel and fascinating results. We also derive several interesting properties of the results of third-order strong differential subordinations for analytic functions associated with the Srivastava-Attiya operator.
引用
收藏
页数:14
相关论文
共 44 条
[1]  
Abd Enaam Hadi, 2021, Journal of Physics: Conference Series, V1818, DOI 10.1088/1742-6596/1818/1/012113
[2]   ON A FIRST ORDER STRONG DIFFERENTIAL SUBORDINATION AND APPLICATION TO UNIVALENT FUNCTIONS [J].
Aghalary, Rasoul ;
Arjomandinia, Parviz .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (02) :445-454
[3]   Sharp Estimates Involving a Generalized Symmetric Sălăgean q-Differential Operator for Harmonic Functions via Quantum Calculus [J].
Al-Shbeil, Isra ;
Khan, Shahid ;
Tchier, Fairouz ;
Tawfiq, Ferdous M. O. ;
Shatarah, Amani ;
Catas, Adriana .
SYMMETRY-BASEL, 2023, 15 (12)
[4]  
Alb Lupa A, 2011, Advances in Analysis and Applied Mathematics, V6, P27
[5]  
Amsheri SM, 2012, International Journal of Mathematical Analysis, V6, P2159
[6]   STRONG DIFFERENTIAL SUBORDINATION TO BRIOT-BOUQUET DIFFERENTIAL-EQUATIONS [J].
ANTONINO, JA ;
ROMAGUERA, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (01) :101-105
[7]  
Antonino JA, 2006, J KOREAN MATH SOC, V43, P311
[8]   Third-order differential inequalities and subordinations in the complex plane [J].
Antonino, Jose A. ;
Miller, Sanford S. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (05) :439-454
[9]   CONVEX AND STARLIKE UNIVALENT FUNCTIONS [J].
BERNARDI, SD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 135 (JAN) :429-&
[10]   Inclusion properties of certain subclasses of analytic functions defined by a multiplier transformation [J].
Cho, Nak Eun ;
Kim, Ji A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (3-4) :323-330