PowerModelsADA: A Framework for Solving Optimal Power Flow Using Distributed Algorithms

被引:1
作者
Alkhraijah, Mohannad [1 ]
Harris, Rachel [1 ]
Coffrin, Carleton [2 ]
Molzahn, Daniel K. [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Los Alamos Natl Lab, Adv Network Sci Initiat, Los Alamos, NM 87545 USA
关键词
Load flow; Generators; Optimization; Data structures; Benchmark testing; Loading; Distributed algorithms; Distributed optimization; optimal power flow; CONSTRAINED UNIT COMMITMENT;
D O I
10.1109/TPWRS.2023.3318858
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents PowerModelsADA, an open-source framework for solving Optimal Power Flow (OPF) problems using Alternating Distributed Algorithms (ADA). PowerModelsADA provides a framework to test, verify, and benchmark both existing and new ADAs. This letter demonstrates use cases for PowerModelsADA and validates its implementation with multiple OPF formulations.
引用
收藏
页码:2357 / 2360
页数:4
相关论文
共 47 条
[1]  
Dalal G., 2018, 2018 POW SYST COMP, P1, DOI 10.23919/PSCC.2018.8442516
[2]   The IEEE reliability test system - 1996 [J].
Grigg, C ;
Wong, P ;
Albrecht, P ;
Allan, R ;
Bhavaraju, M ;
Billinton, R ;
Chen, Q ;
Fong, C ;
Haddad, S ;
Kuruganty, S ;
Li, W ;
Mukerji, R ;
Patton, D ;
Rau, N ;
Reppen, D ;
Schneider, A ;
Shahidehpour, M ;
Singh, C .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (03) :1010-1018
[3]   Topology-Aware Learning Assisted Branch and Ramp Constraints Screening for Dynamic Economic Dispatch [J].
Hasan, Fouad ;
Kargarian, Amin .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (05) :3495-3505
[4]  
Hinman C., caiso.com
[5]  
Iqbal T., 2021, P N AM POW S, P1, DOI [10.1109/NAPS52732.2021.9654579, DOI 10.1109/NAPS52732.2021.9654579]
[6]   Solving Security Constrained Unit Commitment Problem Using Inductive Learning [J].
Iqbal, Talha ;
Ul Banna, Hasan ;
Feliachi, Ali ;
Choudhry, Muhammad .
2022 IEEE KANSAS POWER AND ENERGY CONFERENCE (KPEC 2022), 2022,
[7]   Distributed Q-Learning-Based Online Optimization Algorithm for Unit Commitment and Dispatch in Smart Grid [J].
Li, Fangyuan ;
Qin, Jiahu ;
Zheng, Wei Xing .
IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (09) :4146-4156
[8]   Learning the Optimal Strategy of Power System Operation With Varying Renewable Generations [J].
Li, Mingxuan ;
Wei, Wei ;
Chen, Yue ;
Ge, Ming-Feng ;
Catalao, Joao P. S. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (04) :2293-2305
[9]   Approximate Mixed-Integer Programming Solution with Machine Learning Technique and Linear Programming Relaxation [J].
Lin, Xinming ;
Hou, Z. Jason ;
Ren, Huiying ;
Pan, Feng .
2019 3RD INTERNATIONAL CONFERENCE ON SMART GRID AND SMART CITIES (ICSGSC 2019), 2019, :101-107
[10]  
Lu J., 2022, P 54 N AM POW S, P1