Novel Deep-Learning Approach for Automatic Diagnosis of Alzheimer's Disease from MRI

被引:4
|
作者
Altwijri, Omar [1 ]
Alanazi, Reem [2 ]
Aleid, Adham [1 ]
Alhussaini, Khalid [1 ]
Aloqalaa, Ziyad [1 ]
Almijalli, Mohammed [1 ]
Saad, Ali [1 ]
Pisarchik, Alexander N.
机构
[1] King Saud Univ, Coll Appl Med Sci, Dept Biomed Technol, Riyadh 11433, Saudi Arabia
[2] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
关键词
Alzheimer's disease; image processing; deep learning; transfer learning; classification; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION;
D O I
10.3390/app132413051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces a novel deep-learning methodology that is customized to automatically diagnose Alzheimer's disease (AD) through the analysis of MRI datasets. The process of diagnosing AD via the visual examination of magnetic resonance imaging (MRI) presents considerable challenges. The visual diagnosis of mild to very mild stages of AD is challenging due to the MRI similarities observed between a brain that is aging normally and one that has AD. The detection of AD with extreme precision is critical during its early stages. Deep-learning techniques have recently been shown to be significantly more effective than human detection in identifying various stages of AD, enabling early-stage diagnosis. The aim of this research is to develop a deep-learning approach that utilizes pre-trained convolutional neural networks (CNNs) to accurately detect the severity levels of AD, particularly in situations where the quantity and quality of available datasets are limited. In this approach, the AD dataset is preprocessed via a refined image processing module prior to the training phase. The proposed method was compared to two well-known deep-learning algorithms (VGG16 and ResNet50) using four Kaggle AD datasets: one for the normal stage of the disease and three for the mild, very mild, and moderate stages, respectively. This allowed us to evaluate the effectiveness of the classification results. The three models were compared using six performance metrics. The results achieved with our approach indicate an overall detection accuracy of 99.3%, which is superior to the other existing models.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer's Disease
    Ortiz, Andres
    Munilla, Jorge
    Gorriz, Juan M.
    Ramirez, Javier
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2016, 26 (07)
  • [42] The Diagnosis of Alzheimer's Disease: An Ensemble Approach
    Qiu, Jingyan
    Li, Linjian
    Liu, Yida
    Ou, Yingjun
    Lin, Yubei
    FUZZY SYSTEMS AND DATA MINING VI, 2020, 331 : 93 - 100
  • [43] Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process
    Feng, Wei
    Van Halm-Lutterodt, Nicholas
    Tang, Hao
    Mecum, Andrew
    Mesregah, Mohamed Kamal
    Ma, Yuan
    Li, Haibin
    Zhang, Feng
    Wu, Zhiyuan
    Yao, Erlin
    Guo, Xiuhua
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2020, 30 (06)
  • [44] Application of Deep Learning in the Diagnosis of Alzheimer's and Parkinson's Disease: A Review
    Suganya, Asokan
    Aarthy, Seshadri Lakshminarayanan
    CURRENT MEDICAL IMAGING, 2024, 20
  • [45] Deep Learning for Alzheimer's Disease Classification using Texture Features
    So, Jae-Hong
    Madusanka, Nuwan
    Choi, Heung-Kook
    Choi, Boo-Kyeong
    Park, Hyeon-Gyun
    CURRENT MEDICAL IMAGING, 2019, 15 (07) : 689 - 698
  • [46] Diagnosis of Alzheimer's Disease with Deep Neural Networks
    Esteves, Antonio
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 3, INTELLISYS 2024, 2024, 1067 : 1 - 23
  • [47] Deep-Learning Approach to Automatic Identification of Facial Anomalies in Endocrine Disorders
    Wei, Ren
    Jiang, Chendan
    Gao, Jun
    Xu, Ping
    Zhang, Debing
    Sun, Zhicheng
    Liu, Xiaohai
    Deng, Kan
    Bao, Xinjie
    Sun, Guoqiang
    Yao, Yong
    Lu, Lin
    Zhu, Huijuan
    Wang, Renzhi
    Feng, Ming
    NEUROENDOCRINOLOGY, 2020, 110 (05) : 328 - 337
  • [48] MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction
    Saratxaga, Cristina L.
    Moya, Iratxe
    Picon, Artzai
    Acosta, Marina
    Moreno-Fernandez-de-Leceta, Aitor
    Garrote, Estibaliz
    Bereciartua-Perez, Arantza
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [49] Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer's disease
    Abunadi, Ibrahim
    CONNECTION SCIENCE, 2022, 34 (01) : 2395 - 2430
  • [50] From Online Handwriting to Synthetic Images for Alzheimer's Disease Detection Using a Deep Transfer Learning Approach
    Cilia, Nicole D.
    D'Alessandro, Tiziana
    De Stefano, Claudio
    Fontanella, Francesco
    Molinara, Mario
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (12) : 4243 - 4254