Novel Deep-Learning Approach for Automatic Diagnosis of Alzheimer's Disease from MRI

被引:4
|
作者
Altwijri, Omar [1 ]
Alanazi, Reem [2 ]
Aleid, Adham [1 ]
Alhussaini, Khalid [1 ]
Aloqalaa, Ziyad [1 ]
Almijalli, Mohammed [1 ]
Saad, Ali [1 ]
Pisarchik, Alexander N.
机构
[1] King Saud Univ, Coll Appl Med Sci, Dept Biomed Technol, Riyadh 11433, Saudi Arabia
[2] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 24期
关键词
Alzheimer's disease; image processing; deep learning; transfer learning; classification; CONVOLUTIONAL NEURAL-NETWORK; CLASSIFICATION;
D O I
10.3390/app132413051
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study introduces a novel deep-learning methodology that is customized to automatically diagnose Alzheimer's disease (AD) through the analysis of MRI datasets. The process of diagnosing AD via the visual examination of magnetic resonance imaging (MRI) presents considerable challenges. The visual diagnosis of mild to very mild stages of AD is challenging due to the MRI similarities observed between a brain that is aging normally and one that has AD. The detection of AD with extreme precision is critical during its early stages. Deep-learning techniques have recently been shown to be significantly more effective than human detection in identifying various stages of AD, enabling early-stage diagnosis. The aim of this research is to develop a deep-learning approach that utilizes pre-trained convolutional neural networks (CNNs) to accurately detect the severity levels of AD, particularly in situations where the quantity and quality of available datasets are limited. In this approach, the AD dataset is preprocessed via a refined image processing module prior to the training phase. The proposed method was compared to two well-known deep-learning algorithms (VGG16 and ResNet50) using four Kaggle AD datasets: one for the normal stage of the disease and three for the mild, very mild, and moderate stages, respectively. This allowed us to evaluate the effectiveness of the classification results. The three models were compared using six performance metrics. The results achieved with our approach indicate an overall detection accuracy of 99.3%, which is superior to the other existing models.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Deviation From Model of Normal Aging in Alzheimer's Disease: Application of Deep Learning to Structural MRI Data and Cognitive Tests
    Habuza, Tetiana
    Zaki, Nazar
    Mohamed, Elfadil A.
    Statsenko, Yauhen
    IEEE ACCESS, 2022, 10 : 53234 - 53249
  • [22] Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology
    Bi, Xiuli
    Li, Shutong
    Xiao, Bin
    Li, Yu
    Wang, Guoyin
    Ma, Xu
    NEUROCOMPUTING, 2020, 392 : 296 - 304
  • [23] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [24] Early Diagnosis of Alzheimer's Disease Using Deep Learning
    Ji, Huanhuan
    Liu, Zhenbing
    Yan, Wei Qi
    Klette, Reinhard
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 87 - 91
  • [25] Examining the Potential of Deep Learning in the Early Diagnosis of Alzheimer's Disease using Brain MRI Images
    Mahmood, Anmar
    Cevik, Mesut
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (09) : 791 - 806
  • [26] Dual Attention Multi-Instance Deep Learning for Alzheimer's Disease Diagnosis With Structural MRI
    Zhu, Wenyong
    Sun, Liang
    Huang, Jiashuang
    Han, Liangxiu
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (09) : 2354 - 2366
  • [27] Automatic Early Diagnosis of Alzheimer's Disease Using 3D Deep Ensemble Approach
    Gamal, Aya
    Elattar, Mustafa
    Selim, Sahar
    IEEE ACCESS, 2022, 10 : 115974 - 115987
  • [28] A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease
    Arya, Akhilesh Deep
    Verma, Sourabh Singh
    Chakarabarti, Prasun
    Chakrabarti, Tulika
    Elngar, Ahmed A.
    Kamali, Ali-Mohammad
    Nami, Mohammad
    BRAIN INFORMATICS, 2023, 10 (01)
  • [29] Deep learning-based approach for multi-stage diagnosis of Alzheimer's disease
    Srividhya, L.
    Sowmya, V
    Ravi, Vinayakumar
    Gopalakrishnan, E. A.
    Soman, K. P.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (06) : 16799 - 16822
  • [30] MULTI-SLICE MRI CLASSIFICATION FOR ALZHEIMER'S DISEASE DIAGNOSIS WITH DEEP LEARNING
    Chen, Yang
    Lu, Siyao
    Zhang, Heng
    Zhang, Teng-teng
    Li, Xueping
    Xu, Caixu
    Gong, Zhipeng
    Gong, Haixiao
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2025, 25 (02)