Application of arbuscular mycorrhizal fungi and potassium nitrate improves physiological performance and glycyrrhizin production of licorice under salt stress

被引:0
|
作者
Davar, Rozita [1 ]
Sabbaghtazeh, Elnaz [1 ]
Bybordi, Ahmad [2 ]
Dalalian, Mohammad Reza [1 ]
Saedi, Siamak [1 ]
机构
[1] Islamic Azad Univ, Dept Soil Sci, Tabriz Branch, Tabriz, Iran
[2] Agr Res Educ & Extens Org AREEO, Agr & Nat Resources Res Ctr, Tabriz, Iran
关键词
Catalase; Chlorophyll; Leaf water; Membrane stability; Plant growth; Sodium; TOLERANCE; BIOCHAR; PROLINE; ACID;
D O I
10.5073/JABFQ.2023.096.017
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To examine the effects of potassium nitrate fertilizer (40 and 80 kg ha-1) and inoculation with arbuscular mycorrhizal fungi (25, 50, and 100 g inoculum) on the physiological performance and glycyrrhizin production of licorice plants (Glycyrrhiza glabra L.) under salt stress (irrigation with 4 and 8 dSm-1 of saline water), two field experiments were conducted in 2021 and 2022. Salinity reduced the physiological performance of plants but increased the concentration of glycyrrhizin in the roots. The application of potassium nitrate, especially at a rate of 40 kg ha-1, along with mycorrhiza, resulted in increased nutrient content, antioxidative activities (catalase, peroxidase, and superoxide dismutase activities), membrane stability index, leaf relative water content, photosynthetic pigment content, glycyrrhizin production, and growth (about 45%) of licorice plants. On the other hand, the treatment with KNO3 and mycorrhiza reduced the accumulation of sodium in plant tissues (about 16%). The application of 40 kg ha-1 KNO3 with 50 g of inoculum was found to be the superior treatment for improving the performance of licorice plants under salt stress. According to the findings of this study, the use of KNO3 in combination with arbuscular mycorrhizal fungi is a successful approach to improve plant growth and productivity under saline conditions.
引用
收藏
页码:130 / 137
页数:11
相关论文
共 50 条
  • [41] Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses
    Iman Janah
    Abdelilah Meddich
    Abdelhadi Elhasnaoui
    Sara Khayat
    Mohamed Anli
    Abderrahim Boutasknit
    Salama Aissam
    Kenza Loutfi
    Journal of Soil Science and Plant Nutrition, 2023, 23 : 152 - 162
  • [42] Morpho-Physiological Responses of Grape Rootstock 'Dogridge' to Arbuscular Mycorrhizal Fungi Inoculation Under Salinity Stress
    Upreti, Kaushal Kishore
    Bhatt, Ravindra Mohan
    Panneerselvam, Periyasamy
    Varalakshmi, Lakki Reddy
    INTERNATIONAL JOURNAL OF FRUIT SCIENCE, 2016, 16 (02) : 191 - 209
  • [43] Arbuscular Mycorrhizal Fungi (AMF) on Growth and Nutrient Uptake of Beach Plum (Prunus Maritima) under Salt Stress
    Zai, Xue-ming
    Hao, Zhen-ping
    Wang, Huan
    Ji, Yi-fan
    Li, Yu-ping
    MATERIALS, MACHINES AND DEVELOPMENT OF TECHNOLOGIES FOR INDUSTRIAL PRODUCTION, 2014, 618 : 268 - 272
  • [44] Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis
    Jing Pan
    Fei Peng
    Anna Tedeschi
    Xian Xue
    Tao Wang
    Jie Liao
    Wenjuan Zhang
    Cuihua Huang
    Botanical Studies, 61
  • [45] Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress
    Liang Jin
    Xiangwei Sun
    Xiaojuan Wang
    Yuying Shen
    Fujiang Hou
    Shenghua Chang
    Chang Wang
    Symbiosis, 2010, 50 : 157 - 164
  • [46] Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis
    Pan, Jing
    Peng, Fei
    Tedeschi, Anna
    Xue, Xian
    Wang, Tao
    Liao, Jie
    Zhang, Wenjuan
    Huang, Cuihua
    BOTANICAL STUDIES, 2020, 61 (01)
  • [47] Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress
    Jin, Liang
    Sun, Xiangwei
    Wang, Xiaojuan
    Shen, Yuying
    Hou, Fujiang
    Chang, Shenghua
    Wang, Chang
    SYMBIOSIS, 2010, 50 (03) : 157 - 164
  • [48] The Effect of Arbuscular Mycorrhizal Fungi on Photosystem II of the Host Plant Under Salt Stress: A Meta-Analysis
    Wang, Yingnan
    Wang, Jinghong
    Yan, Xiufeng
    Sun, Shengnan
    Lin, Jixiang
    AGRONOMY-BASEL, 2019, 9 (12):
  • [49] PHYSIOLOGICAL INDICES AND PRODUCTION OF SESAME UNDER SALT STRESS AND NITRATE/AMMONIUM PROPORTIONS
    Dias, Adaan Sudario
    de Lima, Geovani Soares
    dos Anjos Soares, Lauriane Almeida
    Gheyi, Hans Raj
    Nobre, Reginaldo Gomes
    dos Santos, Joao Batista
    da Silva Sa, Francisco Vanies
    BIOSCIENCE JOURNAL, 2017, 33 (03): : 610 - 620
  • [50] Arbuscular mycorrhizal fungi reduce potassium, cadmium and ammonium losses but increases nitrate loss under high intensity leaching events
    Yan Xiao
    Lu Chen
    BMC Plant Biology, 22