Application of arbuscular mycorrhizal fungi and potassium nitrate improves physiological performance and glycyrrhizin production of licorice under salt stress

被引:0
|
作者
Davar, Rozita [1 ]
Sabbaghtazeh, Elnaz [1 ]
Bybordi, Ahmad [2 ]
Dalalian, Mohammad Reza [1 ]
Saedi, Siamak [1 ]
机构
[1] Islamic Azad Univ, Dept Soil Sci, Tabriz Branch, Tabriz, Iran
[2] Agr Res Educ & Extens Org AREEO, Agr & Nat Resources Res Ctr, Tabriz, Iran
来源
JOURNAL OF APPLIED BOTANY AND FOOD QUALITY | 2023年 / 96卷
关键词
Catalase; Chlorophyll; Leaf water; Membrane stability; Plant growth; Sodium; TOLERANCE; BIOCHAR; PROLINE; ACID;
D O I
10.5073/JABFQ.2023.096.017
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To examine the effects of potassium nitrate fertilizer (40 and 80 kg ha-1) and inoculation with arbuscular mycorrhizal fungi (25, 50, and 100 g inoculum) on the physiological performance and glycyrrhizin production of licorice plants (Glycyrrhiza glabra L.) under salt stress (irrigation with 4 and 8 dSm-1 of saline water), two field experiments were conducted in 2021 and 2022. Salinity reduced the physiological performance of plants but increased the concentration of glycyrrhizin in the roots. The application of potassium nitrate, especially at a rate of 40 kg ha-1, along with mycorrhiza, resulted in increased nutrient content, antioxidative activities (catalase, peroxidase, and superoxide dismutase activities), membrane stability index, leaf relative water content, photosynthetic pigment content, glycyrrhizin production, and growth (about 45%) of licorice plants. On the other hand, the treatment with KNO3 and mycorrhiza reduced the accumulation of sodium in plant tissues (about 16%). The application of 40 kg ha-1 KNO3 with 50 g of inoculum was found to be the superior treatment for improving the performance of licorice plants under salt stress. According to the findings of this study, the use of KNO3 in combination with arbuscular mycorrhizal fungi is a successful approach to improve plant growth and productivity under saline conditions.
引用
收藏
页码:130 / 137
页数:11
相关论文
共 50 条
  • [21] Effects of arbuscular mycorrhizal fungi on the growth and metabolism of perennial ryegrass (Lolium perenne) under salt stress
    LI, Wei
    Zhai, Yan-Lin
    Hu, Xue-Yi
    Guo, Shao-Xia
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2023, 51 (01)
  • [22] Proteomics Analysis of E. angustifolia Seedlings Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Jia, Tingting
    Wang, Jian
    Chang, Wei
    Fan, Xiaoxu
    Sui, Xin
    Song, Fuqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (03)
  • [23] Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress
    Sheteiwy, Mohamed S.
    Ali, Dina Fathi Ismail
    Xiong, You-Cai
    Brestic, Marian
    Skalicky, Milan
    Hamoud, Yousef Alhaj
    Ulhassan, Zaid
    Shaghaleh, Hiba
    AbdElgawad, Hamada
    Farooq, Muhammad
    Sharma, Anket
    El-Sawah, Ahmed M.
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [24] Physiological and biochemical responses of arbuscular mycorrhizal fungi in symbiosis with Juglans nigra L. seedlings to alleviate salt stress
    Li, Ao
    Wu, Chengxu
    Zheng, Xu
    Nie, Ruining
    Tang, Jiali
    Ji, Xinying
    Zhang, Junpei
    RHIZOSPHERE, 2024, 31
  • [25] Sex-Specific Differences in the Physiological and Biochemical Performance of Arbuscular Mycorrhizal Fungi-Inoculated Mulberry Clones Under Salinity Stress
    Wang, Yan-Hong
    Zhang, Nai-Li
    Wang, Min-Qiang
    He, Xiao-Bin
    Lv, Zhi-Qiang
    Wei, Jia
    Su, Xiu
    Wu, Ai-Ping
    Li, Yan
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [26] The Interactive Effects of Silicon and Arbuscular Mycorrhizal Fungi on Growth, Physio-biochemical Traits, and Cob Yield of Baby Corn Plants under Salt Stress
    Islam, A. T. M. Tanjimul
    Ullah, Hayat
    Himanshu, Sushil Kumar
    Tisarum, Rujira
    Cha-um, Suriyan
    Datta, Avishek
    SILICON, 2023, 15 (10) : 4457 - 4471
  • [27] Do halophytes and glycophytes differ in their interactions with arbuscular mycorrhizal fungi under salt stress? A meta-analysis
    Jing Pan
    Fei Peng
    Anna Tedeschi
    Xian Xue
    Tao Wang
    Jie Liao
    Wenjuan Zhang
    Cuihua Huang
    Botanical Studies, 61
  • [28] Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress
    Allah, Elsayed Fathi Abd
    Hashem, Abeer
    Alqarawi, Abdulaziz Abdullah
    Bahkali, Ali Hassan
    Alwhibi, Mona S.
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2015, 22 (03) : 274 - 283
  • [29] The Effect of Arbuscular Mycorrhizal Fungi on Photosystem II of the Host Plant Under Salt Stress: A Meta-Analysis
    Wang, Yingnan
    Wang, Jinghong
    Yan, Xiufeng
    Sun, Shengnan
    Lin, Jixiang
    AGRONOMY-BASEL, 2019, 9 (12):
  • [30] Effects of arbuscular mycorrhizal fungi and dark septate endophytes on maize performance and root traits under a high cadmium stress
    He, Y. M.
    Fan, X. M.
    Zhang, G. Q.
    Li, B.
    Li, T. G.
    Zu, Y. Q.
    Zhan, F. D.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2020, 134 : 415 - 423