Application of arbuscular mycorrhizal fungi and potassium nitrate improves physiological performance and glycyrrhizin production of licorice under salt stress

被引:0
|
作者
Davar, Rozita [1 ]
Sabbaghtazeh, Elnaz [1 ]
Bybordi, Ahmad [2 ]
Dalalian, Mohammad Reza [1 ]
Saedi, Siamak [1 ]
机构
[1] Islamic Azad Univ, Dept Soil Sci, Tabriz Branch, Tabriz, Iran
[2] Agr Res Educ & Extens Org AREEO, Agr & Nat Resources Res Ctr, Tabriz, Iran
来源
JOURNAL OF APPLIED BOTANY AND FOOD QUALITY | 2023年 / 96卷
关键词
Catalase; Chlorophyll; Leaf water; Membrane stability; Plant growth; Sodium; TOLERANCE; BIOCHAR; PROLINE; ACID;
D O I
10.5073/JABFQ.2023.096.017
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To examine the effects of potassium nitrate fertilizer (40 and 80 kg ha-1) and inoculation with arbuscular mycorrhizal fungi (25, 50, and 100 g inoculum) on the physiological performance and glycyrrhizin production of licorice plants (Glycyrrhiza glabra L.) under salt stress (irrigation with 4 and 8 dSm-1 of saline water), two field experiments were conducted in 2021 and 2022. Salinity reduced the physiological performance of plants but increased the concentration of glycyrrhizin in the roots. The application of potassium nitrate, especially at a rate of 40 kg ha-1, along with mycorrhiza, resulted in increased nutrient content, antioxidative activities (catalase, peroxidase, and superoxide dismutase activities), membrane stability index, leaf relative water content, photosynthetic pigment content, glycyrrhizin production, and growth (about 45%) of licorice plants. On the other hand, the treatment with KNO3 and mycorrhiza reduced the accumulation of sodium in plant tissues (about 16%). The application of 40 kg ha-1 KNO3 with 50 g of inoculum was found to be the superior treatment for improving the performance of licorice plants under salt stress. According to the findings of this study, the use of KNO3 in combination with arbuscular mycorrhizal fungi is a successful approach to improve plant growth and productivity under saline conditions.
引用
收藏
页码:130 / 137
页数:11
相关论文
共 50 条
  • [1] Physiological Response of Citrus macrophylla Inoculated with Arbuscular Mycorrhizal Fungi under Salt Stress
    Navarro, Josefa M.
    Morte, Asuncion
    Rodriguez-Moran, Manuel
    Perez-Tornero, Olaya
    XII INTERNATIONAL CITRUS CONGRESS - INTERNATIONAL SOCIETY OF CITRICULTURE, 2015, 1065 : 1351 - 1358
  • [2] Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress
    Hashem, Abeer
    Abd allah, Elsayed Fathi
    Alqarawi, Abdulaziz A.
    Wirth, Stephan
    Egamberdieva, Dilfuza
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2019, 26 (01) : 38 - 48
  • [3] Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa bungei CAMey. under Drought Stress
    Chen, Wei
    Meng, Panpan
    Feng, Huan
    Wang, Chunyan
    FORESTS, 2020, 11 (10): : 1 - 29
  • [4] Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress
    Zhang, Wenwen
    Wang, Chong
    Lu, Tianyi
    Zheng, Yanjia
    PLANT AND SOIL, 2018, 423 (1-2) : 125 - 140
  • [5] ARBUSCULAR MYCORRHIZAL FUNGI ENHANCE BASIL TOLERANCE TO SALT STRESS THROUGH IMPROVED PHYSIOLOGICAL AND NUTRITIONAL STATUS
    Abeer, Hashem
    Salwa, Alterami A.
    Alqarawi, A. A.
    Abd-Allah, E. F.
    Egamberdieva, D.
    PAKISTAN JOURNAL OF BOTANY, 2016, 48 (01) : 37 - 45
  • [6] Mitigation of salt stress by dual application of arbuscular mycorrhizal fungi and salicylic acid
    Abdelhameed, R. E.
    Metwally, R. A.
    AGROCHIMICA, 2018, 62 (04): : 353 - 366
  • [7] Effect of earthworms and arbuscular mycorrhizal fungi on the microbial community and maize growth under salt stress
    Zhang, Wenwen
    Cao, Jia
    Zhang, Shudong
    Wang, Chong
    APPLIED SOIL ECOLOGY, 2016, 107 : 214 - 223
  • [8] Growth and physiological responses to arbuscular mycorrhizal fungi and salt stress in dioecious plant Populus tomentosa
    Lu, Yanwei
    Wang, Guangquan
    Meng, Qingjie
    Zhang, Wenhui
    Duan, Baoli
    CANADIAN JOURNAL OF FOREST RESEARCH, 2014, 44 (09) : 1020 - 1031
  • [9] Physiological and Metabolic Effects of the Inoculation of Arbuscular Mycorrhizal Fungi in Solanum tuberosum Crops under Water Stress
    Valdebenito, Analia
    Nahuelcura, Javiera
    Santander, Christian
    Cornejo, Pablo
    Contreras, Boris
    Gomez-Alonso, Sergio
    Ruiz, Antonieta
    PLANTS-BASEL, 2022, 11 (19):
  • [10] Arbuscular Mycorrhizal Fungi Mitigates Salt Stress Toxicity in Stevia rebaudiana Bertoni Through the Modulation of Physiological and Biochemical Responses
    Janah, Iman
    Meddich, Abdelilah
    Elhasnaoui, Abdelhadi
    Khayat, Sara
    Anli, Mohamed
    Boutasknit, Abderrahim
    Aissam, Salama
    Loutfi, Kenza
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (01) : 152 - 162