Inequality restricted estimator for gamma regression: Bayesian approach as a solution to the multicollinearity

被引:0
作者
Seifollahi, Solmaz [1 ]
Bevrani, Hossein [1 ]
Kamary, Kaniav [2 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Tabriz, Iran
[2] Univ Paris Saclay, Federat Math, Cent Supelec, Gif Sur Yvette, France
关键词
Bayesian inference; gamma regression model; linear inequality restriction; prior modeling; LEAST-SQUARES ESTIMATOR; MODELS; BIAS;
D O I
10.1080/03610926.2023.2281267
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the multicollinearity problem in the gamma regression model when model parameters are bounded linearly restricted. The linear restrictions are available from prior information to ensure the validity of scientific theories or structural consistency based on physical phenomena. To make relevant statistical inference for a model, any available knowledge and prior information on the model parameters should be taken into account. This article proposes therefore an algorithm to acquire Bayesian estimator for the parameters of a gamma regression model subjected to some linear inequality restrictions. We then show that the proposed estimator outperforms the ordinary estimators such as the maximum likelihood and ridge estimators in terms of pertinence and accuracy through Monte Carlo simulations and application to a real dataset.
引用
收藏
页码:8297 / 8311
页数:15
相关论文
共 40 条
[1]   Performance of some ridge estimators for the gamma regression model [J].
Amin, Muhammad ;
Qasim, Muhammad ;
Amanullah, Muhammad ;
Afzal, Saima .
STATISTICAL PAPERS, 2020, 61 (03) :997-1026
[2]   Optimal partial ridge estimation in restricted semiparametric regression models [J].
Amini, Morteza ;
Roozbeh, Mandi .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 136 :26-40
[3]  
[Anonymous], 1986, Journal of Applied Econometrics, DOI DOI 10.1002/JAE.3950010203
[4]  
[Anonymous], 2004, Technical report
[5]  
[Anonymous], 2016, TH.data: TH's Data Archive. R package version 1
[6]   Almost unbiased Liu-type estimators in gamma regression model [J].
Asar, Yasin ;
Korkmaz, Merve .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 403
[7]   Fast Simulation of Hyperplane-Truncated Multivariate Normal Distributions [J].
Cong, Yulai ;
Chen, Bo ;
Zhou, Mingyuan .
BAYESIAN ANALYSIS, 2017, 12 (04) :1017-1037
[8]   Gaussian process regression with linear inequality constraints [J].
Da Veiga, Sebastien ;
Marrel, Amandine .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 195
[9]   Variable selection in gamma regression models via artificial bee colony algorithm [J].
Dunder, Emre ;
Gumustekin, Serpil ;
Cengiz, Mehmet Ali .
JOURNAL OF APPLIED STATISTICS, 2018, 45 (01) :8-16
[10]   THE BIAS OF THE LEAST-SQUARES ESTIMATOR OVER INTERVAL CONSTRAINTS [J].
ESCOBAR, LA ;
SKARPNESS, B .
ECONOMICS LETTERS, 1986, 20 (04) :331-335