A Boltzmann Electron Drift Diffusion Model for Atmospheric Pressure Non-Thermal Plasma Simulations

被引:4
作者
Popoli, Arturo [1 ]
Ragazzi, Fabio [1 ]
Pierotti, Giacomo [1 ]
Neretti, Gabriele [1 ]
Cristofolini, Andrea [1 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn, I-40136 Bologna, Italy
关键词
numerical simulation; drift diffusion reaction; Boltzmann relation; Poisson-Boltzmann; dielectric barrier discharge (DBD); atmospheric pressure air; plasma kinetics; DIELECTRIC BARRIER DISCHARGE; HELIUM; TRANSPORT; SCHEME; STATE;
D O I
10.3390/plasma6030027
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a fluid computational model for the numerical simulation of atmospheric pressure dielectric barrier discharge plasmas. Ion and neutral species are treated with an explicit drift diffusion approach. The Boltzmann relation is used to compute the spatial distribution of electrons as a function of the electrostatic potential and the ionic charge density. This technique, widely used to speed up particle and fluid models for low-pressure conditions, poses several numerical challenges for high-pressure conditions and large electric field values typical of applications involving atmospheric-pressure plasmas. We develop a robust algorithm to solve the non-linear electrostatic Poisson problem arising from the Boltzmann electron approach under AC electric fields based on a charge-conserving iterative computation of the reference electric potential and electron density. We simulate a volumetric reactor in dry air, comparing the results yielded by the proposed method with those obtained when the drift diffusion approach is used for all charged species, including electrons. We show that the proposed methodology retains most of the physical information provided by the reference modeling approach while granting a substantial advantage in terms of computation time.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 50 条
[31]   Electrical and optical characteristics of cylindrical non-thermal atmospheric-pressure dielectric barrier discharge plasma sources [J].
Wu, Yui Lun ;
Hong, Jungmi ;
Ouyang, Zihao ;
Cho, Tae S. ;
Ruzic, D. N. .
SURFACE & COATINGS TECHNOLOGY, 2013, 234 :100-103
[32]   Implementation of a Non-Thermal Atmospheric Pressure Plasma for Eradication of Plant Pathogens from a Surface of Economically Important Seeds [J].
Motyka-Pomagruk, Agata ;
Dzimitrowicz, Anna ;
Orlowski, Jakub ;
Babinska, Weronika ;
Terefinko, Dominik ;
Rychlowski, Michal ;
Prusinski, Michal ;
Pohl, Pawel ;
Lojkowska, Ewa ;
Jamroz, Piotr ;
Sledz, Wojciech .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
[33]   Non-thermal atmospheric gas plasma for decontamination of sliced cheese and changes in quality [J].
Huang, Yi-Ming ;
Chen, Chung-Kai ;
Hsu, Chuan-Liang .
FOOD SCIENCE AND TECHNOLOGY INTERNATIONAL, 2020, 26 (08) :715-726
[34]   Kinetic Simulations of Volatile Organic Compounds Decomposition by Non-thermal Plasma Treatment [J].
Xia, Dehong ;
Li, Zhiyong ;
Xie, Yulei ;
Zhang, Xinru .
WATER AIR AND SOIL POLLUTION, 2016, 227 (12)
[35]   Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism [J].
Lee, Amanda ;
Lin, Abraham ;
Shah, Kajol ;
Singh, Harpreet ;
Miller, Vandana ;
Rao, Shubha Gururaja .
PLOS ONE, 2016, 11 (08)
[36]   Simulations on the Discharge Characteristics of the Plasmas Produced by the Electron Beams at Atmospheric Pressure With the Lattice Boltzmann Method [J].
Wang, Hui ;
Ma, Yu ;
Wang, Zhi-Bin .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2022, 50 (07) :2058-2067
[37]   Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes [J].
Attri, Pankaj ;
Yusupov, Maksudbek ;
Park, Ji Hoon ;
Lingamdinne, Lakshmi Prasanna ;
Koduru, Janardhan Reddy ;
Shiratani, Masaharu ;
Choi, Eun Ha ;
Bogaerts, Annemie .
SCIENTIFIC REPORTS, 2016, 6
[38]   Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation [J].
Cole, Jonathan ;
Zhang, Yao ;
Liu, Tianqi ;
Liu, Chang-Jun ;
Sankaran, R. Mohan .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (30)
[39]   Antibacterial activity and effect on gingival cells of microwave-pulsed non-thermal atmospheric pressure plasma in artificial saliva [J].
Seo, Sang-Hee ;
Han, Ihn ;
Lee, Han Seol ;
Choi, Jin Joo ;
Choi, Eun Ha ;
Kim, Kyoung-Nam ;
Park, Gyungsoon ;
Kim, Kwang-Mahn .
SCIENTIFIC REPORTS, 2017, 7
[40]   Model analysis of atmospheric non-thermal plasma for methane abatement in a gas phase dielectric barrier discharge reactor [J].
Molteni, Matteo ;
Donazzi, Alessandro .
CHEMICAL ENGINEERING SCIENCE, 2020, 212