Single-Crystal Growth of P2-Type Layered Oxides with Increased Exposure of {010} Planes for High-Performance Sodium-Ion Batteries

被引:10
|
作者
Zhang, Le [1 ]
Huang, Jieyou [1 ]
Song, Miaoyan [1 ]
Lu, Chen [1 ]
Wu, Wenwei [1 ,2 ]
Wu, Xuehang [1 ]
机构
[1] Guangxi Univ, Sch Chem & Chem Engn, Nanning 530004, Peoples R China
[2] Guangxi Normal Univ Nationalities, Guangxi Key Lab High Value Utilizat Manganese Res, Chongzuo 532200, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium-ion batteries; P2-type layered oxides; single-crystal growth; interfacial stability; Na+ transport kinetics; OXYGEN REDOX CHEMISTRY; CATHODE MATERIALS; CYCLING PERFORMANCE; PHASE-TRANSITION; SUBSTITUTION; NA2/3NI1/3MN2/3O2; ELECTRODE; INSIGHTS; CO;
D O I
10.1021/acsami.3c10312
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An increase in the size of single-crystal particles can effectively reduce the interfacial side reactions of layered oxides for sodium-ion batteries at high voltages but may result in sluggish Na+ transport. Herein, single-crystal Na0.66Ni0.26Zn0.07Mn0.67O2 with increased proportions of {010} planes is synthesized by adding low-cost NaCl as the molten salt. With the assistance of a NaCl molten salt, the median diameter (D50) of single-crystal Na0.66Ni0.26Zn0.07Mn0.67O2 increases to 10.46 mu m relative to that of the comparison sample without NaCl (6.57 mu m). Electrolyte decomposition on the surface of single-crystal Na0.66Ni0.26Zn0.07Mn0.67O2 is considerably suppressed, owing to a decrease in the specific surface area. Moreover, the increased exposure of {010} planes is favorable for improving the Na+ transport kinetics of single-crystal particles. Therefore, at 100 mA g(-1), single-crystal Na0.66Ni0.26Zn0.07Mn0.67O2 exhibits a high-capacity retention of 96.6% after 100 cycles, which is considerably greater than that of the comparison sample (86.8%). Moreover, the rate performance of single-crystal Na0.66Ni0.26Zn0.07Mn0.67O2 (average discharge capacity of 81.2 mAh g(-1)) is superior to that of the comparison sample (average discharge capacity of 61.2 mAh g(-1)) at 2000 mA g(-1). This work provides a new approach for promoting the single-crystal growth of layered oxides for highly stable interfaces at high voltages without compromising Na+ transport kinetics.
引用
收藏
页码:47037 / 47048
页数:12
相关论文
共 50 条
  • [1] Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries
    Zhang, Fengping
    Lu, Yao
    Guo, Yun
    Li, Chunliu
    Liu, Yan
    Yang, Maofeng
    Zhao, Binyu
    Wu, Wenwei
    Wu, Xuehang
    CHEMICAL ENGINEERING JOURNAL, 2023, 458
  • [2] Negative Enthalpy Doping Stabilizes P2-Type Oxides Cathode for High-Performance Sodium-Ion Batteries
    Huang, Yongcong
    Gu, Shuai
    Xu, Xin
    An, Zibing
    Han, Xiaodong
    Cao, Yulin
    He, Dongsheng
    Zhang, Fangchang
    Guo, Hao
    Liu, Yan
    Liao, Xingqun
    Liu, Guiyu
    Liu, Peiwen
    Wu, Feng
    Li, Yingzhi
    Wang, Zhenyu
    Wang, Zhiqiang
    Ding, Chao
    Wang, Yanfang
    Chen, Jingjing
    Yang, Mingyang
    Jiang, Feng
    Deng, Yonghong
    Xu, Zhenghe
    Lu, Zhouguang
    ADVANCED MATERIALS, 2025,
  • [3] Rational Design of a P2-Type Spherical Layered Oxide Cathode for High-Performance Sodium-Ion Batteries
    Xiao, Jun
    Zhang, Fan
    Tang, Kaikai
    Li, Xiao
    Wang, Dandan
    Wang, Yong
    Liu, Hao
    Wu, Minghong
    Wang, Guoxiu
    ACS CENTRAL SCIENCE, 2019, 5 (12) : 1937 - 1945
  • [4] Understanding and Optimizing Li Substitution in P2-Type Sodium Layered Oxides for Sodium-Ion Batteries
    Xu, Mingfeng
    Gammaitoni, Giovanni
    Haefner, Michael
    Villalobos-Portillo, Eduardo
    Marini, Carlo
    Bianchini, Matteo
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [5] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    Rare Metals, 2020, 39 : 332 - 334
  • [6] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Yang, Ying
    Wei, Wei-Feng
    RARE METALS, 2020, 39 (04) : 332 - 334
  • [7] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    RareMetals, 2020, 39 (04) : 332 - 334
  • [8] Achieving High Stability and Performance in P2-Type Mn-Based Layered Oxides with Tetravalent Cations for Sodium-Ion Batteries
    Vanaphuti, Panawan
    Yao, Zeyi
    Liu, Yangtao
    Lin, Yulin
    Wen, Jianguo
    Yang, Zhenzhen
    Feng, Zimin
    Ma, Xiaotu
    Zauha, Anna C.
    Wang, Yan
    Wang, Yan
    SMALL, 2022, 18 (19)
  • [9] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):
  • [10] Realizing High-Performance Cathodes with Cationic and Anionic Redox Reactions in High-Sodium-Content P2-Type Oxides for Sodium-Ion Batteries
    Liu, Qiong
    Zheng, Wei
    Liu, Guiyu
    Hu, Jing
    Zhang, Xuan
    Han, Ning
    Wang, Zhenyu
    Lu, Zhouguang
    Fransaer, Jan
    Luo, Jiangshui
    ACS APPLIED MATERIALS & INTERFACES, 2023,