A vectorial problem with thin free boundary

被引:2
作者
De Silva, Daniela [1 ]
Tortone, Giorgio [2 ]
机构
[1] Columbia Univ, Barnard Coll, Dept Math, New York, NY 10027 USA
[2] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
基金
欧洲研究理事会;
关键词
REGULARITY;
D O I
10.1007/s00526-023-02561-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the vectorial analogue of the thin free boundary problem introduced by Caffarelli et al. (JEur math Soc 12:1151-1179, 2010) as a realization of a nonlocal version of the classical Bernoulli problem. We study optimal regularity, nondegeneracy, and density properties of local minimizers. Via a blow-up analysis based on a Weiss type monotonicity formula, we show that the free boundary is the union of a "regular" and a "singular" part. Finally we use a viscosity approach to prove C-1,C-alpha regularity of the regular part of the free boundary.
引用
收藏
页数:34
相关论文
共 26 条
[1]   A two-phase problem with a lower-dimensional free boundary [J].
Allen, Mark ;
Petrosyan, Arshak .
INTERFACES AND FREE BOUNDARIES, 2012, 14 (03) :307-342
[2]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[3]   VARIATIONAL-PROBLEMS WITH 2 PHASES AND THEIR FREE BOUNDARIES [J].
ALT, HW ;
CAFFARELLI, LA ;
FRIEDMAN, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :431-461
[4]  
Caffarelli L.A., 1988, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V15, P583
[5]   A MINIMIZATION PROBLEM WITH FREE BOUNDARY RELATED TO A COOPERATIVE SYSTEM [J].
Caffarelli, Luis A. ;
Shahgholian, Henrik ;
Yeressian, Karen .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (10) :1825-1882
[6]   Variational problems with free boundaries for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Roquejoffre, Jean-Michel ;
Sire, Yannick .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) :1151-1179
[7]   Regularity of the free boundary for the two-phase Bernoulli problem [J].
De Philippis, Guido ;
Spolaor, Luca ;
Velichkov, Bozhidar .
INVENTIONES MATHEMATICAE, 2021, 225 (02) :347-394
[8]   Thin one-phase almost minimizers [J].
De Silva, D. ;
Savin, O. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[9]  
De Silva D, 2015, INDIANA U MATH J, V64, P1575, DOI 10.1512/iumj.2015.64.5632
[10]   C2,α regularity of flat free boundaries for the thin one-phase problem [J].
De Silva, D. ;
Savin, O. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) :2420-2459