Faster variational quantum algorithms with quantum kernel-based surrogate models

被引:3
作者
Smith, Alistair W. R. [1 ]
Paige, A. J. [1 ]
Kim, M. S. [1 ]
机构
[1] Imperial Coll London, Blackett Lab, QOLS, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
quantum computing; quantum algorithms; machine learning; Bayesian optimization; quantum machine learning; surrogate models; MATRIX PRODUCT STATES; RENORMALIZATION-GROUP; SIMULATION; GATE;
D O I
10.1088/2058-9565/aceb87
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a new optimization strategy for small-to-intermediate scale variational quantum algorithms (VQAs) on noisy near-term quantum processors which uses a Gaussian process surrogate model equipped with a classically-evaluated quantum kernel. VQAs are typically optimized using gradient-based approaches however these are difficult to implement on current noisy devices, requiring large numbers of objective function evaluations. Our approach shifts this computational burden onto the classical optimizer component of these hybrid algorithms, greatly reducing the number of quantum circuit evaluations required from the quantum processor. We focus on the variational quantum eigensolver (VQE) algorithm and demonstrate numerically that these surrogate models are particularly well suited to the algorithm's objective function. Next, we apply these models to both noiseless and noisy VQE simulations and show that they exhibit better performance than widely-used classical kernels in terms of final accuracy and convergence speed. Compared to the typically-used stochastic gradient-descent approach to VQAs, our quantum kernel-based approach is found to consistently achieve significantly higher accuracy while requiring less than an order of magnitude fewer quantum circuit executions. We analyze the performance of the quantum kernel-based models in terms of the kernels' induced feature spaces and explicitly construct their feature maps. Finally, we describe a scheme for approximating the best-performing quantum kernel using a classically-efficient tensor network representation of its input state and so provide a pathway for scaling this strategy to larger systems.
引用
收藏
页数:28
相关论文
共 89 条
[11]   Hand-waving and interpretive dance: an introductory course on tensor networks [J].
Bridgeman, Jacob C. ;
Chubb, Christopher T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (22)
[12]  
Brochu E, 2010, Arxiv, DOI [arXiv:1012.2599, DOI 10.48550/ARXIV.1012.2599]
[13]   The boundary for quantum advantage in Gaussian boson sampling [J].
Bulmer, Jacob F. F. ;
Bell, Bryn A. ;
Chadwick, Rachel S. ;
Jones, Alex E. ;
Moise, Diana ;
Rigazzi, Alessandro ;
Thorbecke, Jan ;
Haus, Utz-Uwe ;
Van Vaerenbergh, Thomas ;
Patel, Raj B. ;
Walmsley, Ian A. ;
Laing, Anthony .
SCIENCE ADVANCES, 2022, 8 (04)
[14]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[15]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[16]   Learning the quantum algorithm for state overlap [J].
Cincio, Lukasz ;
Subasi, Yigit ;
Sornborger, Andrew T. ;
Coles, Patrick J. .
NEW JOURNAL OF PHYSICS, 2018, 20
[17]  
Czarnik P, 2021, Arxiv, DOI [arXiv:2102.06056, 10.48550/arXiv.2102.06056]
[18]   Fault-tolerant control of an error-corrected qubit [J].
Egan, Laird ;
Debroy, Dripto M. ;
Noel, Crystal ;
Risinger, Andrew ;
Zhu, Daiwei ;
Biswas, Debopriyo ;
Newman, Michael ;
Li, Muyuan ;
Brown, Kenneth R. ;
Cetina, Marko ;
Monroe, Christopher .
NATURE, 2021, 598 (7880) :281-+
[19]  
Farhi E, 2019, Arxiv, DOI arXiv:1602.07674
[20]   Evaluating the noise resilience of variational quantum algorithms [J].
Fontana, Enrico ;
Fitzpatrick, Nathan ;
Ramo, David Munoz ;
Duncan, Ross ;
Rungger, Ivan .
PHYSICAL REVIEW A, 2021, 104 (02)