Resveratrol Mitigates Bisphenol A-Induced Metabolic Disruptions: Insights from Experimental Studies

被引:10
作者
Akash, Muhammad Sajid Hamid [1 ]
Fatima, Mutayyba [1 ]
Rehman, Kanwal [2 ]
Rehman, Qudsia [1 ]
Chauhdary, Zunera [1 ]
Nadeem, Ahmed [3 ]
Mir, Tahir Maqbool [4 ]
机构
[1] Govt Coll Univ, Dept Pharmaceut Chem, Faisalabad 38000, Pakistan
[2] Women Univ, Dept Pharm, Multan 60000, Pakistan
[3] King Saud Univ, Coll Pharm, Dept Pharmacol & Toxicol, Riyadh 11451, Saudi Arabia
[4] Univ Mississippi, Natl Ctr Nat Prod Res, Sch Pharm, University, MS 38677 USA
来源
MOLECULES | 2023年 / 28卷 / 15期
关键词
insulin growth factor 1; Glucokinase; metabolic disorders; endocrine disruptor; uncoupling protein 2; RT-qPCR; OXIDATIVE STRESS; IN-VITRO; FREE-RADICALS; ENDOCRINE;
D O I
10.3390/molecules28155865
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The aim of this study was to investigate the disruptions of metabolic pathways induced by bisphenol A (BPA) and explore the potential therapeutic intervention provided by resveratrol (RSV) in mitigating these disruptions through the modulation of biochemical pathways. Wistar albino rats were divided into three groups: group 1 served as the control, group 2 received 70 mg/Kg of BPA, and group 3 received 70 mg/kg of BPA along with 100 mg/Kg of RSV. After the treatment period, various biomarkers and gene expressions were measured to assess the effects of BPA and the potential protective effects of RSV. The results revealed that BPA exposure significantly increased the serum levels of & alpha;-amylase, & alpha;-glucosidase, G6PC, insulin, HbA1c, HMG-CoA reductase, FFAs, TGs, DPP-4, MDA, and proinflammatory cytokines such as TNF-& alpha; and IL-6. Concurrently, BPA exposure led to a reduction in the levels of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), as well as GLUT4 and HDL cholesterol. However, the administration of RSV along with BPA significantly ameliorated these alterations in the biomarker levels induced through BPA exposure. RSV treatment effectively reduced the elevated levels of & alpha;-amylase, & alpha;-glucosidase, G6PC, insulin, HbA1c, HMG-CoA reductase, FFAs, TGs, DPP-4, MDA, and proinflammatory cytokines, while increasing the levels of antioxidant enzymes, GLUT4, and HDL cholesterol. Furthermore, BPA exposure suppressed the mRNA expression of glucokinase (GCK), insulin-like growth factor 1 (IGF-1), and glucose transporter 2 (GLUT2) and up-regulated the mRNA expression of uncoupling protein 2 (UCP2), which are all critical biomarkers involved in glucose metabolism and insulin regulation. In contrast, RSV treatment effectively restored the altered mRNA expressions of these biomarkers, indicating its potential to modulate transcriptional pathways and restore normal metabolic function. In conclusion, the findings of this study strongly suggest that RSV holds promise as a therapeutic intervention for BPA-induced metabolic disorders. By mitigating the disruptions in various metabolic pathways and modulating gene expressions related to glucose metabolism and insulin regulation, RSV shows potential in restoring normal metabolic function and counteracting the adverse effects induced by BPA exposure. However, further research is necessary to fully understand the underlying mechanisms and optimize the dosage and duration of RSV treatment for maximum therapeutic benefits.
引用
收藏
页数:23
相关论文
共 44 条
[1]   Insulin-like growth factor-1 deficiency and metabolic syndrome [J].
Aguirre, G. A. ;
Rodriguez De Ita, J. ;
de la Garza, R. G. ;
Castilla-Cortazar, I. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2016, 14
[2]  
Akash M.S.H., 2021, EXPO PREV INTERV, DOI [10.1007/978-3-030-66376-6_9, DOI 10.1007/978-3-030-66376-6_9, 10.1007/978-3-030-45923-9_22, DOI 10.1007/978-3-030-45923-9_22]
[3]   Bisphenol A-induced metabolic disorders: From exposure to mechanism of action [J].
Akash, Muhammad Sajid Hamid ;
Sabir, Shakila ;
Rehman, Kanwal .
ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY, 2020, 77
[4]   Bisphenol-A and metabolic diseases: epigenetic, developmental and transgenerational basis [J].
Alonso-Magdalena, Paloma ;
Rivera, Francisco J. ;
Guerrero-Bosagna, Carlos .
ENVIRONMENTAL EPIGENETICS, 2016, 2 (03) :1-10
[5]   Determination of Metabolomics Profiling in BPA-Induced Impaired Metabolism [J].
Alvi, Maria ;
Rehman, Kanwal ;
Akash, Muhammad Sajid Hamid ;
Yaqoob, Azka ;
Shoaib, Syed Muhammad .
PHARMACEUTICS, 2022, 14 (11)
[6]   Modulatory role of selenium and vitamin E, natural antioxidants, against bisphenol A-induced oxidative stress in wistar albinos rats [J].
Amraoui W. ;
Adjabi N. ;
Bououza F. ;
Boumendjel M. ;
Taibi F. ;
Boumendjel A. ;
Abdennour C. ;
Messarah M. .
Toxicological Research, 2018, 34 (3) :231-239
[7]   Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo [J].
Bhan, Arunoday ;
Hussain, Imran ;
Ansari, Khairul I. ;
Bobzean, Samara A. M. ;
Perrotti, Linda I. ;
Mandal, Subhrangsu S. .
JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2014, 141 :160-170
[8]   Endocrine-Disrupting Potential of Bisphenol A, Bisphenol A Dimethacrylate, 4-n-Nonylphenol, and 4-n-Octylphenol in Vitro: New Data and a Brief Review [J].
Bonefeld-Jorgensen, Eva C. ;
Long, Manhai ;
Hofmeister, Marlene V. ;
Vinggaard, Anne Marie .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2007, 115 :69-76
[9]   Resveratrol diminishes bisphenol A-induced oxidative stress through TRPM2 channel in the mouse kidney cortical collecting duct cells [J].
Cig, Bilal ;
Yildizhan, Kenan .
JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION, 2020, 40 (06) :570-583
[10]   Exercise, free radicals and oxidative stress [J].
Cooper, CE ;
Vollaard, NBJ ;
Choueiri, T ;
Wilson, MT .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2002, 30 :280-285