Oxygen Electrode PrBa0.5Sr0.5Co1.5Fe0.5O5+δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ with Different Composite Proportions for Proton-Conducting Solid Oxide Electrolysis Cells

被引:13
|
作者
Bai, Hu [1 ]
Zhang, Yanhong [1 ]
Chu, Jiaming [1 ]
Zhou, Qi [1 ]
Lan, Haiyang [1 ]
Zhou, Juan [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
PrBa0 5Sr0 5Co1 5Fe0 5O5+& delta; -BaZr0 1Ce0 7Y0 1Yb0 1O3-& delta; (PBSCF-BZCYYb); oxygen electrode; proton-conductingsolid oxide electrolysiscells; composite proportions; constant voltage electrolysis; CERAMIC ELECTROCHEMICAL-CELLS; IMPEDANCE DATA; CORROSION; CATHODE; PERFORMANCE; GENERATION; STABILITY; STRONTIUM; SULFUR; STEEL;
D O I
10.1021/acsami.3c07638
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Proton-conducting solid oxide electrolysis cell (H-SOEC), as a hydrogen production device using proton conductor oxides as an electrolyte, has gained attention due to its various advantages of being more suitable for operating conditions at intermediate and low temperatures. However, its commercialization urgently needs to address the issue of insufficient catalytic activity of the oxygen electrode at lower temperatures. In this work, PrBa0.5Sr0.5Co1.5Fe0.5O5+d-BaZr0.1Ce0.7Y0.1Yb0.1O3-d (PBSCF-BZCYYb) series composite materials (denoted as PBSCF-BZCYYb46, PBSCF- BZCYYb55, and PBSCF-BZCYYb64 based on the mass ratios of PBSCF and BZCYYb as 4:6, 5:5, and 6:4, respectively) are prepared and applied as oxygen electrodes for H-SOECs. The H-SOECs with the structure of PBSCF-BZCYYb|BZCYYb|NiO-BZCYYb (active layer)|NiO-BZCYYb (support layer) are prepared and recorded as Cell 1, Cell 2, and Cell 3 with PBSCF-BZCYYb46, PBSCF-BZCYYb55, and PBSCF-BZCYYb64 as oxygen electrodes. The H-SOECs exhibit electrolysis current densities of 669.00, 743.80, and 503.30 mA cm(-2) under 1.3 V at 650 & DEG;C, respectively. The cells also show considerable stability in the constant voltage electrolysis of 179.5, 152.8, and 83.0 h, respectively. Through the comparison of various electrochemical properties, PBSCF-BZCYYb55 is considered the most promising oxygen electrode material in this work.
引用
收藏
页码:38581 / 38591
页数:11
相关论文
共 50 条
  • [1] BaZr0.1Ce0.7Y0.1Yb0.1O3-δ particles embedded PrBa0.5Sr0.5Co1.5Fe0.5O5+δ hollow nanofibers with 3D fast transmission path as oxygen electrode for proton-conducting solid oxide electrolysis cell
    Chu, Jiaming
    Lan, Haiyang
    Chen, Ting
    Ling, Yihan
    Wang, Zixian
    Song, Ruiqing
    Jin, Weitao
    Zhou, Juan
    Wang, Shaorong
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 40391 - 40401
  • [2] PrBa0.5Sr0.5Co1.5Fe0.5O5+δ as air electrode for proton-conducting solid oxide cells
    Bai, Hu
    Chu, Jiaming
    Chen, Ting
    Leng, Zhizhong
    Zhang, Bo
    Zhang, Yanhong
    Zhou, Qi
    Zhou, Juan
    Wang, Shaorong
    JOURNAL OF POWER SOURCES, 2023, 574
  • [3] Enhanced Electrochemical Performance of a Ba0.5Sr0.5Co0.7Fe0.2Ni0.1O3-δ-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ Composite Oxygen Electrode for Protonic Ceramic Electrochemical Cells
    Wang, Yakun
    Pei, Kai
    Zhao, Bote
    Zhao, Yun
    Wang, Haobing
    Niu, Quan
    Chen, Yu
    ENERGY & FUELS, 2021, 35 (17) : 14101 - 14109
  • [4] Preparation and Properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ as Novel Oxygen Electrode for Solid Oxide Electrolysis Cells
    Tian, Y. F.
    Yan, D.
    Chi, B.
    Chen, J.
    Li, X.
    Li, J.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 533 - 541
  • [5] Electrical properties of BaZr0.5Ce0.3Y0.1Yb0.1O3-δ proton conductor for reversible proton-conducting solid oxide electrochemical cells
    Kim, In -Ho
    Lim, Dae-Kwang
    Namgung, Yeon
    Bae, Hohan
    Park, Jun-Young
    Song, Sun-Ju
    ACTA MATERIALIA, 2023, 249
  • [6] A novel PrBaCo2O5+σ-BaZr0.1Ce0.7Y0.1Yb0.1O3 composite cathode for proton-conducting solid oxide fuel cells
    Liu, Bo
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Li, Jian
    COMPOSITES PART B-ENGINEERING, 2020, 191 (191)
  • [7] Enhanced electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrodes for hydrogen and methane oxidation in solid oxide fuel cells by Pd or Cu0.5Pd0.5 impregnation
    Zhang, Jiang-Tao
    Liang, Feng-Li
    Chi, Bo
    Pu, Jian
    Lian, Li
    JOURNAL OF POWER SOURCES, 2012, 200 : 29 - 33
  • [8] A cobalt-free Sm0.5Sr0.5FeO3-δ-BaZr0.1Ce0.7Y0.2O3-δ composite cathode for proton-conducting solid oxide fuel cells
    Lu, Xiaoyong
    Chen, Yonghong
    Ding, Yanzhi
    Lin, Bin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (10) : 8630 - 8634
  • [9] Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ by addition of nickel oxide
    Liu, Yong
    Yang, Lei
    Liu, Mingfei
    Tang, Zhiyuan
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2011, 196 (23) : 9980 - 9984
  • [10] A cobalt-free SrFe0.9Sb0.1O3-δ cathode material for proton-conducting solid oxide fuel cells with stable BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte
    Ling, Yihan
    Zhang, Xiaozhen
    Wang, Songlin
    Zhao, Ling
    Lin, Bin
    Liu, Xingqin
    JOURNAL OF POWER SOURCES, 2010, 195 (20) : 7042 - 7045