Airborne Absolute Gravimetry With a Quantum Sensor, Comparison With Classical Technologies

被引:18
作者
Bidel, Y. [1 ]
Zahzam, N. [1 ]
Bresson, A. [1 ]
Blanchard, C. [1 ]
Bonnin, A. [1 ]
Bernard, J. [2 ]
Cadoret, M. [2 ]
Jensen, T. E. [3 ]
Forsberg, R. [3 ]
Salaun, C. [4 ]
Lucas, S. [4 ]
Lequentrec-Lalancette, M. F. [4 ]
Rouxel, D. [4 ]
Gabalda, G. [5 ]
Seoane, L. [5 ]
Vu, D. T. [5 ]
Bruinsma, S. [5 ]
Bonvalot, S. [5 ]
机构
[1] Univ Paris Saclay, DPHY, ONERA, Palaiseau, France
[2] LCM CNAM, La Plaine St Denis, France
[3] Tech Univ Denmark, Natl Space Inst, Lyngby, Denmark
[4] Shom French Hydrog & Oceanog Off, Brest, France
[5] CNES Univ Toulouse, GET CNRS, IRD, UPS, Toulouse, France
关键词
airborne gravimetry; quantum sensor; MODEL;
D O I
10.1029/2022JB025921
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We report an airborne gravity survey with an absolute gravimeter based on atom interferometry and two relative gravimeters: a classical LaCoste & Romberg (L & R) and a novel iMAR strapdown Inertial Measurement Unit. We estimated measurement errors for the quantum gravimeter ranging from 0.6 to 1.3 mGal depending on the flight conditions and the filtering used. Similar measurement errors are obtained with iMAR strapdown gravimeter, but the long-term stability is five times worse. The traditional L & R platform gravimeter shows larger measurement errors (3-4 mGal). Airborne measurements have been compared to marine, land, and altimetry-derived gravity data. We obtain a good agreement for the quantum gravimeter with standard deviations and means on differences below or equal to 2 mGal. This study confirms the potential of quantum technology for absolute airborne gravimetry, which is particularly interesting for mapping shallow water or mountainous areas and for linking ground and satellite measurements with homogeneous absolute referencing.
引用
收藏
页数:25
相关论文
共 39 条
  • [1] Berman P. R., 1997, Atom Interferometry
  • [2] Atom interferometry using σ+-σ- Raman transitions between |F=1, mF = ∓1⟩ and |F=2, mF = ±1⟩
    Bernard, J.
    Bidel, Y.
    Cadoret, M.
    Salducci, C.
    Zahzam, N.
    Schwartz, S.
    Bonnin, A.
    Blanchard, C.
    Bresson, A.
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [3] Absolute marine gravimetry with matter-wave interferometry
    Bidel, Y.
    Zahzam, N.
    Blanchard, C.
    Bonnin, A.
    Cadoret, M.
    Bresson, A.
    Rouxel, D.
    Lequentrec-Lalancette, M. F.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [4] Absolute airborne gravimetry with a cold atom sensor
    Bidel, Yannick
    Zahzam, Nassim
    Bresson, Alexandre
    Blanchard, Cedric
    Cadoret, Malo
    Olesen, Arne, V
    Forsberg, Rene
    [J]. JOURNAL OF GEODESY, 2020, 94 (02)
  • [5] Blakely R. J., 1995, POTENTIAL THEORY GRA, DOI DOI 10.1017/CBO9780511549816
  • [6] New concepts of inertial measurements with multi-species atom interferometry
    Bonnin, Alexis
    Diboune, Clement
    Zahzam, Nassim
    Bidel, Yannick
    Cadoret, Malo
    Bresson, Alexandre
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2018, 124 (09):
  • [7] Bonvalot S., 2018, GIRAFE AIRGRAVI POTE
  • [8] Compact and robust laser system for onboard atom interferometry
    Carraz, O.
    Lienhart, F.
    Charriere, R.
    Cadoret, M.
    Zahzam, N.
    Bidel, Y.
    Bresson, A.
    [J]. APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (02): : 405 - 411
  • [9] The shuttle radar topography mission
    Farr, Tom G.
    Rosen, Paul A.
    Caro, Edward
    Crippen, Robert
    Duren, Riley
    Hensley, Scott
    Kobrick, Michael
    Paller, Mimi
    Rodriguez, Ernesto
    Roth, Ladislav
    Seal, David
    Shaffer, Scott
    Shimada, Joanne
    Umland, Jeffrey
    Werner, Marian
    Oskin, Michael
    Burbank, Douglas
    Alsdorf, Douglas
    [J]. REVIEWS OF GEOPHYSICS, 2007, 45 (02)
  • [10] A NEW COVARIANCE MODEL FOR INERTIAL GRAVIMETRY AND GRADIOMETRY
    FORSBERG, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B2): : 1305 - 1310