Exponential sums equations and tropical geometry

被引:3
作者
Gallinaro, Francesco Paolo
机构
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 04期
关键词
Exponential-Algebraic Closedness; Exponential sums equations; Tropical geometry; OPERATOR;
D O I
10.1007/s00029-023-00853-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zilber's Exponential-Algebraic Closedness Conjecture states that algebraic varieties in C-n x (C-x)(n) intersect the graph of complex exponentiation, unless that contradicts the algebraic and transcendence properties of exp. We establish a case of the conjecture, showing that it holds for varieties which split as the product of a linear subspace of the additive group and an algebraic subvariety of the multiplicative group. This amounts to solving certain systems of exponential sums equations, and it generalizes old results of Zilber, which required the linear subspace to either be defined over a generic subfield of the real numbers, or it to be any subspace defined over the reals assuming unproved conjectures from Diophantine geometry and transcendence theory. The proofs use the theory of amoebas and tropical geometry.
引用
收藏
页数:41
相关论文
共 30 条
  • [1] A Geometric Approach to Some Systems of Exponential Equations
    Aslanyan, Vahagn
    Kirby, Jonathan
    Mantova, Vincenzo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (05) : 4046 - 4081
  • [2] Pseudo-exponential maps, variants, and quasiminimality
    Bays, Martin
    Kirby, Jonathan
    [J]. ALGEBRA & NUMBER THEORY, 2018, 12 (03) : 493 - 549
  • [3] Quasiminimal structures and excellence
    Bays, Martin
    Hart, Bradd
    Hyttinen, Tapani
    Kesala, Meeri
    Kirby, Jonathan
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2014, 46 : 155 - 163
  • [4] A Schanuel property for exponentially transcendental powers
    Bays, Martin
    Kirby, Jonathan
    Wilkie, A. J.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 : 917 - 922
  • [5] Zero estimates with moving targets
    Brownawell, W. D.
    Masser, D. W.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 441 - 454
  • [6] Chirka EM., 2012, MATH ITS APPL
  • [7] Cox D. A., 2011, Toric Varieties. Graduate studies in mathematics, V124
  • [8] A WEAK VERSION OF THE STRONG EXPONENTIAL CLOSURE
    D'Aquino, Paola
    Fornasiero, Antongiulio
    Terzo, G.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 242 (02) : 697 - 705
  • [9] Fulton W., 1993, Ann. of Math. Stud., V131, DOI DOI 10.1515/9781400882526
  • [10] Gelfand I.M., 1994, Discriminants, resultants, and multidimensional determinants, DOI 10.1007/978-0-8176-4771-1