A Multi-View Clustering based Dynamic Partitioning Method for Distribution Network

被引:1
|
作者
Cui, Li [1 ]
Bingsen, Xia [1 ]
Zhenglong, Leng [1 ]
机构
[1] State Grid Fujian Econ Res Inst, Fuzhou, Peoples R China
来源
2023 IEEE 3RD INTERNATIONAL CONFERENCE IN POWER ENGINEERING APPLICATIONS, ICPEA | 2023年
关键词
distribution network; multi-view clustering; k-means; area partitioning;
D O I
10.1109/ICPEA56918.2023.10093151
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aiming at solving the division problem of the area-centralized layout in the power distribution network, a dynamic partitioning method of distribution network area based on a multi-view clustering algorithm is proposed. Firstly, a mathematical model is established to calculate the optimal number of clusters considering communication quality and communication cost. Secondly, the Laplacian matrix of distribution network structure and other perspectives, such as the geographic location and the administrative area of distribution network stations are introduced to the distribution network area division by multi-view clustering. Thirdly, one of the stations is selected as the edge computing center to ensure efficient edge computing by combining the clustering center and the actual situation. Finally, the proposed method realizes the effective partitioning of the distribution network and the automatic area adjustment when the structure of distribution network changes. Based on the network structure calculation of 145 stations in a local distribution network, the experimental simulation results verify that the proposed partitioning method is practical and feasible.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 50 条
  • [31] Multi-view Spectral Clustering Based on Graph Learning
    Song, Jinmei
    Liu, Baokai
    Zhang, Kaiwu
    Yu, Yao
    Du, Shiqiang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6527 - 6532
  • [32] GMC: Graph-Based Multi-View Clustering
    Wang, Hao
    Yang, Yan
    Liu, Bing
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1116 - 1129
  • [33] CMvSC: Knowledge Transferring Based Deep Consensus Network for Multi-view Spectral Clustering
    Zhang Y.-L.
    Yang Y.
    Zhou W.
    Ouyang X.-C.
    Hu J.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (04): : 1373 - 1389
  • [34] Kernel-based Weighted Multi-view Clustering
    Tzortzis, Grigorios
    Likas, Aristidis
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 675 - 684
  • [35] Multi-view clustering based on graph learning and view diversity learning
    Lin Wang
    Dong Sun
    Zhu Yuan
    Qingwei Gao
    Yixiang Lu
    The Visual Computer, 2023, 39 : 6133 - 6149
  • [36] Multi-view clustering based on graph learning and view diversity learning
    Wang, Lin
    Sun, Dong
    Yuan, Zhu
    Gao, Qingwei
    Lu, Yixiang
    VISUAL COMPUTER, 2023, 39 (12) : 6133 - 6149
  • [37] Multi-Task Multi-View Clustering
    Zhang, Xiaotong
    Zhang, Xianchao
    Liu, Han
    Liu, Xinyue
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (12) : 3324 - 3338
  • [38] Fast Dynamic Multi-view Clustering with semantic-consistency inheritance
    Lu, Shuyao
    Xu, Deng
    Zhang, Chao
    Zhu, Zhangqing
    KNOWLEDGE-BASED SYSTEMS, 2024, 300
  • [39] Multi-view clustering via dynamic unified bipartite graph learning
    Zhao, Xingwang
    Wang, Shujun
    Liu, Xiaolin
    Liang, Jiye
    PATTERN RECOGNITION, 2024, 156
  • [40] View-Weighted Multi-view K-means Clustering
    Yu, Hong
    Lian, Yahong
    Li, Shu
    Chen, JiaXin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 305 - 312