Diffuse Emission of Galactic High-energy Neutrinos from a Global Fit of Cosmic Rays

被引:21
作者
Schwefer, Georg [1 ,2 ,3 ]
Mertsch, Philipp [1 ]
Wiebusch, Christopher [2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Particle Phys & Cosmol TTK, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, III Phys Inst B, D-52056 Aachen, Germany
[3] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany
关键词
Unified Astronomy Thesaurus concepts; Gamma-ray astronomy (628); Neutrino astronomy (1100); Diffuse radiation (383); Galactic cosmic rays (567); LARGE-AREA TELESCOPE; ALPHA MAGNETIC SPECTROMETER; GAMMA-RAY; FERMI-LAT; MILKY-WAY; SYNCHROTRON-RADIATION; SPATIAL-DISTRIBUTION; MOLECULAR CLOUDS; INTERSTELLAR GAS; CONSTRAINTS;
D O I
10.3847/1538-4357/acc1e2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the standard picture of Galactic cosmic rays, a diffuse flux of high-energy gamma rays and neutrinos is produced from inelastic collisions of cosmic-ray nuclei with the interstellar gas. The neutrino flux is a guaranteed signal for high-energy neutrino observatories such as IceCube but has not been found yet. Experimental searches for this flux constitute an important test of the standard picture of Galactic cosmic rays. Both observation and nonobservation would allow important implications for the physics of cosmic-ray acceleration and transport. We present CRINGE, a new model of Galactic diffuse high-energy gamma rays and neutrinos, fitted to recent cosmic-ray data from AMS-02, DAMPE, IceTop, as well as KASCADE. We quantify the uncertainties for the predicted emission from the cosmic-ray model but also from the choice of source distribution, gas maps, and cross sections. We consider the possibility of a contribution from unresolved sources. Our model predictions exhibit significant deviations from older models.
引用
收藏
页数:23
相关论文
共 137 条
[61]  
Draine BT, 2011, PR S ASTROP, P1
[62]  
Drury L. O'C., 2018, ICRC BUSAN, V35, P1081, DOI [10.22323/1.301.1081, DOI 10.22323/1.301.1081]
[63]   Simulating the Galactic multi-messenger emissions with HERMES [J].
Dundovic, A. ;
Evoli, C. ;
Gaggero, D. ;
Grasso, D. .
ASTRONOMY & ASTROPHYSICS, 2021, 653
[64]   AMS-02 beryllium data and its implication for cosmic ray transport [J].
Evoli, Carmelo ;
Morlino, Giovanni ;
Blasi, Pasquale ;
Aloisio, Roberto .
PHYSICAL REVIEW D, 2020, 101 (02)
[65]   Origin of the Cosmic Ray Galactic Halo Driven by Advected Turbulence and Self-Generated Waves [J].
Evoli, Carmelo ;
Blasi, Pasquale ;
Morlino, Giovanni ;
Aloisio, Roberto .
PHYSICAL REVIEW LETTERS, 2018, 121 (02)
[66]   Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients [J].
Evoli, Carmelo ;
Gaggero, Daniele ;
Vittino, Andrea ;
Di Bernardo, Giuseppe ;
Di Mauro, Mattia ;
Ligorini, Arianna ;
Ullio, Piero ;
Grasso, Dario .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (02)
[67]   Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: a new diffusion model [J].
Evoli, Carmelo ;
Gaggero, Daniele ;
Grasso, Dario ;
Maccione, Luca .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2008, (10)
[68]   Multimessenger Implications of Sub-PeV Diffuse Galactic Gamma-Ray Emission [J].
Fang, Ke ;
Murase, Kohta .
ASTROPHYSICAL JOURNAL, 2021, 919 (02)
[69]   Spatial distribution of interstellar gas in the innermost 3 kpc of our galaxy [J].
Ferriere, K. ;
Gillard, W. ;
Jean, P. .
ASTRONOMY & ASTROPHYSICS, 2007, 467 (02) :611-627
[70]   Global model of the interstellar medium in our galaxy with new constraints on the hot gas component [J].
Ferriere, K .
ASTROPHYSICAL JOURNAL, 1998, 497 (02) :759-776