On squares of Fourier coefficients twist exponential functions with applications

被引:0
作者
Zhang, Wei [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Henan, Peoples R China
关键词
Exponential sums; Beatty sequence; automorphic forms; ARITHMETIC FUNCTIONS; SUMS; PRIMES;
D O I
10.1142/S1793042123500938
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a Hecke-Maass cusp form of weight zero for SL2(Z) and lambda(f)(n) be the nth Fourier coefficient. For almost all v, we have [GRAPHICS] . which improves the result of Acharya [Exponential sums of squares of Fourier coefficients of cusp forms, Proc. Indian Acad. Sci. Math. Sci. 130 (2020) 24], who showed an upper bound larger than x(0.8297). For all alpha > 1 of type tau < infinity, we also show that [GRAPHICS] . where B alpha,ss := {[ alpha n+ ss]}(infinity) (n=1). This result relies heavily on a generalized double sum (see Theorem 1.3).
引用
收藏
页码:1953 / 1965
页数:13
相关论文
共 26 条
  • [1] Arithmetic functions on Beatty sequences
    Abercrombie, Alex G.
    Banks, William D.
    Shparlinski, Igor E.
    [J]. ACTA ARITHMETICA, 2009, 136 (01) : 81 - 89
  • [2] Exponential sums of squares of Fourier coefficients of cusp forms
    Acharya, Ratnadeep
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [3] Banks WD, 2006, MATH RES LETT, V13, P539
  • [4] CARMICHAEL NUMBERS COMPOSED OF PRIMES FROM A BEATTY SEQUENCE
    Banks, William D.
    Yeager, Aaron M.
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 125 (01) : 129 - 137
  • [5] Blazeková O, 2011, XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, P93
  • [6] THE LOCALISATION OF PRIMES IN ARITHMETIC PROGRESSIONS OF IRRATIONAL MODULUS
    Bruedern, Joerg
    Kawada, Koichi
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 123 (01) : 53 - 61
  • [7] ZEROS OF L-FUNCTIONS ATTACHED TO MAASS FORMS
    EPSTEIN, C
    HAFNER, JL
    SARNAK, P
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (01) : 113 - 128
  • [8] GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
  • [9] SOME REMARKS ON ODD MAASS WAVE FORMS
    HAFNER, JL
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) : 129 - 132
  • [10] Iwaniec H., 2002, Graduate Studies in Mathematics, V53