Anelastic-like nature of the rejuvenation of metallic glasses by cryogenic thermal cycling

被引:37
作者
Costa, Miguel B. [1 ]
London, Juan J. [2 ,3 ]
Blatter, Andreas [2 ]
Hariharan, Avinash [4 ]
Gebert, Annett [4 ]
Carpenter, Michael A. [5 ]
Greer, A. Lindsay [1 ,6 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England
[2] PX Serv, Res & Dev Dept, CH-2300 La Chaux De Fonds, Switzerland
[3] Univ Leoben, Dept Mat Sci, A-8700 Leoben, Austria
[4] Dresden IFW Dresden, Leibniz Inst Solid State & Mat Res, Inst Complex Mat, D-01069 Dresden, Germany
[5] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[6] Tohoku Univ, WPI Adv Inst Mat Res, Sendai 9808577, Japan
基金
英国自然环境研究理事会; 欧洲研究理事会;
关键词
Bulk metallic glasses; Mechanical properties; Structural relaxation; Thermal cycling; Anelasticity; PLASTIC-FLOW; INELASTIC DEFORMATION; STRUCTURAL RELAXATION; AMORPHOUS ALLOY; TOUGHNESS;
D O I
10.1016/j.actamat.2022.118551
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cryogenic thermal cycling (CTC) is an effective treatment for improving the room-temperature plasticity and toughness in metallic glasses. Despite considerable attention to characterizing the effects of CTC, they remain poorly understood. A prominent example is that, contrary to expectation, the stored energy in a metallic glass first rises, and then decreases, as CTC progresses. In this work, CTC is applied to bulk metallic glasses based on Pd, Pt, Ti, or Zr. The effects on calorimetric and mechanical properties are evaluated. Critically, CTC-induced effects, at whatever stage, are found to decay over about one week at room temperature after CTC, returning the properties to those of the as-cast glass. A model is proposed for CTC-induced effects, treating them as analogous to the accumulation of anelastic strain. The implications for analysis of existing data, and for future research on CTC effects, are highlighted.
引用
收藏
页数:9
相关论文
共 67 条
  • [1] Relaxation in glassforming liquids and amorphous solids
    Angell, CA
    Ngai, KL
    McKenna, GB
    McMillan, PF
    Martin, SW
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 88 (06) : 3113 - 3157
  • [2] MECHANISMS OF INELASTIC DEFORMATION IN METALLIC GLASSES
    ARGON, AS
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1982, 43 (10) : 945 - 961
  • [3] FREE-ENERGY SPECTRA FOR INELASTIC DEFORMATION OF 5 METALLIC-GLASS ALLOYS
    ARGON, AS
    KUO, HY
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1980, 37 (02) : 241 - 266
  • [4] Metallic glasses as structural materials
    Ashby, MF
    Greer, AL
    [J]. SCRIPTA MATERIALIA, 2006, 54 (03) : 321 - 326
  • [5] Resonant ultrasound spectroscopy: The essential toolbox
    Balakirev, Fedor F.
    Ennaceur, Susan M.
    Migliori, Robert J.
    Maiorov, Boris
    Migliori, Albert
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (12)
  • [6] On the strain rate sensitivity of plastic flow in metallic glasses
    Bhattacharyya, Abir
    Singh, Gaurav
    Prasad, K. Eswar
    Narasimhan, R.
    Ramamurty, U.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 625 : 245 - 251
  • [7] Atomic-level structure and structure-property relationship in metallic glasses
    Cheng, Y. Q.
    Ma, E.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2011, 56 (04) : 379 - 473
  • [8] Anelastic deformation of a Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation
    Concustell, A
    Sort, J
    Greer, AL
    Baró, MD
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (17)
  • [9] Micro-plasticity in a fragile model binary glass
    Derlet, P. M.
    Maass, R.
    [J]. ACTA MATERIALIA, 2021, 209
  • [10] Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20
    Fan, GJ
    Löffler, JF
    Wunderlich, RK
    Fecht, HJ
    [J]. ACTA MATERIALIA, 2004, 52 (03) : 667 - 674