Glucose-Responsive Charge-Switchable Lipid Nanoparticles for Insulin Delivery

被引:10
作者
Liu, Yun [1 ,2 ]
Wang, Yanfang [1 ,2 ]
Yao, Yuejun [1 ,2 ]
Zhang, Juan [1 ,2 ]
Liu, Wei [1 ,2 ]
Ji, Kangfan [1 ,2 ]
Wei, Xinwei [1 ,2 ]
Wang, Yuanwu [1 ]
Liu, Xiangsheng [3 ]
Zhang, Shiming [4 ]
Wang, Jinqiang [1 ,2 ,5 ]
Gu, Zhen [1 ,2 ,6 ,7 ,8 ]
机构
[1] Zhejiang Univ, Coll Pharmaceut Sci, Key Lab Adv Drug Delivery Syst Zhejiang Prov, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Jinhua Inst, Jinhua 321299, Peoples R China
[3] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Hangzhou 310022, Peoples R China
[4] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
[5] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Hangzhou 310009, Peoples R China
[6] Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Gen Surg, Hangzhou 310009, Peoples R China
[7] Zhejiang Univ, Zhejiang Lab Syst & Precis Med, Med Ctr, Hangzhou 310009, Peoples R China
[8] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310009, Peoples R China
基金
国家重点研发计划;
关键词
Diabetes; Drug Delivery; Glucose-Responsive; Insulin Delivery; Lipid Nanoparticles; CATIONIC COPOLYMER HYDROGELS; LIPOSOMES; CELLS; DESIGN; SIRNA;
D O I
10.1002/anie.202303097
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lipid nanoparticle-based drug delivery systems have a profound clinical impact on nucleic acid-based therapy and vaccination. Recombinant human insulin, a negatively-charged biomolecule like mRNA, may also be delivered by rationally-designed positively-charged lipid nanoparticles with glucose-sensing elements and be released in a glucose-responsive manner. Herein, we have designed phenylboronic acid-based quaternary amine-type cationic lipids that can self-assemble into spherical lipid nanoparticles in an aqueous solution. Upon mixing insulin and the lipid nanoparticles, a heterostructured insulin complex is formed immediately arising from the electrostatic attraction. In a hyperglycemia-relevant glucose solution, lipid nanoparticles become less positively charged over time, leading to reduced attraction and subsequent insulin release. Compared with native insulin, this lipid nanoparticle-based glucose-responsive insulin shows prolonged blood glucose regulation ability and blood glucose-triggered insulin release in a type 1 diabetic mouse model.
引用
收藏
页数:6
相关论文
共 40 条
[21]   Emerging micro-and nanotechnology based synthetic approaches for insulin delivery [J].
Mo, Ran ;
Jiang, Tianyue ;
Di, Jin ;
Tai, Wanyi ;
Gu, Zhen .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (10) :3595-3629
[22]  
Obika S, 1999, BIOL PHARM BULL, V22, P187
[23]   Physicochemical, foundations and structural design of hydrogels in medicine and biology [J].
Peppas, NA ;
Huang, Y ;
Torres-Lugo, M ;
Ward, JH ;
Zhang, J .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2000, 2 :9-29
[24]   Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts [J].
Podual, K ;
Doyle, FJ ;
Peppas, NA .
JOURNAL OF CONTROLLED RELEASE, 2000, 67 (01) :9-17
[25]   Preparation and dynamic response of cationic copolymer hydrogels containing glucose oxidase [J].
Podual, K ;
Doyle, FJ ;
Peppas, NA .
POLYMER, 2000, 41 (11) :3975-3983
[26]   Dynamic behavior of glucose oxidase-containing microparticles of poly(ethylene glycol)-grafted cationic hydrogels in an environment of changing pH [J].
Podual, K ;
Doyle, FJ ;
Peppas, NA .
BIOMATERIALS, 2000, 21 (14) :1439-1450
[27]   A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo [J].
Sato, Yusuke ;
Hatakeyama, Hiroto ;
Sakurai, Yu ;
Hyodo, Mamoru ;
Akita, Hidetaka ;
Harashima, Hideyoshi .
JOURNAL OF CONTROLLED RELEASE, 2012, 163 (03) :267-276
[28]   Rational design of cationic lipids for siRNA delivery [J].
Semple, Sean C. ;
Akinc, Akin ;
Chen, Jianxin ;
Sandhu, Ammen P. ;
Mui, Barbara L. ;
Cho, Connie K. ;
Sah, Dinah W. Y. ;
Stebbing, Derrick ;
Crosley, Erin J. ;
Yaworski, Ed ;
Hafez, Ismail M. ;
Dorkin, J. Robert ;
Qin, June ;
Lam, Kieu ;
Rajeev, Kallanthottathil G. ;
Wong, Kim F. ;
Jeffs, Lloyd B. ;
Nechev, Lubomir ;
Eisenhardt, Merete L. ;
Jayaraman, Muthusamy ;
Kazem, Mikameh ;
Maier, Martin A. ;
Srinivasulu, Masuna ;
Weinstein, Michael J. ;
Chen, Qingmin ;
Alvarez, Rene ;
Barros, Scott A. ;
De, Soma ;
Klimuk, Sandra K. ;
Borland, Todd ;
Kosovrasti, Verbena ;
Cantley, William L. ;
Tam, Ying K. ;
Manoharan, Muthiah ;
Ciufolini, Marco A. ;
Tracy, Mark A. ;
de Fougerolles, Antonin ;
MacLachlan, Ian ;
Cullis, Pieter R. ;
Madden, Thomas D. ;
Hope, Michael J. .
NATURE BIOTECHNOLOGY, 2010, 28 (02) :172-U18
[29]  
Soto Veliz D., 2023, Smart Med, V2
[30]   IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045 [J].
Sun, Hong ;
Saeedi, Pouya ;
Karuranga, Suvi ;
Pinkepank, Moritz ;
Ogurtsova, Katherine ;
Duncan, Bruce B. ;
Stein, Caroline ;
Basit, Abdul ;
Chan, Juliana C. N. ;
Mbanya, Jean Claude ;
Pavkov, Meda E. ;
Ramachandaran, Ambady ;
Wild, Sarah H. ;
James, Steven ;
Herman, William H. H. ;
Zhang, Ping ;
Bommer, Christian ;
Kuo, Shihchen ;
Boyko, Edward J. J. ;
Magliano, Dianna J. .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2022, 183