Non-Hermitian Orthogonal Polynomials on a Trefoil

被引:0
作者
Barhoumi, Ahmad B. [1 ]
Yattselev, Maxim L. [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Indiana Univ Purdue Univ Indianapolis, Dept Math Sci, 402 North Blackford St, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
Non-Hermitian orthogonality; Strong asymptotics; Pade approximation; Riemann-Hilbert analysis; PADE APPROXIMANTS; STRONG ASYMPTOTICS; CONVERGENCE;
D O I
10.1007/s00365-023-09640-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate asymptotic behavior of polynomials Q(n)(z) satisfying non-Hermitian orthogonality relations integral(Delta)s(k)Q(n)(s)rho(s)ds = 0, k is an element of{0,..., n - 1}, where Delta is a Chebotarev (minimal capacity) contour connecting three non-collinear points and rho(s) is a Jacobi-type weight including a possible power-type singularity at the Chebotarev center of Delta
引用
收藏
页码:271 / 331
页数:61
相关论文
共 28 条
  • [1] AKHIEZER NI, 1960, DOKL AKAD NAUK SSSR+, V134, P9
  • [2] [Anonymous], 2006, The Riemann-Hilbert approach
  • [3] [Anonymous], 2000, ORTHOGONAL POLYNOMIA
  • [4] [Anonymous], 1975, Univalent Functions
  • [5] [Anonymous], 1971, Russian Math. Surveys, DOI 10.1070/RM1971v026n0
  • [6] Pade approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials
    Aptekarev, Alexander I.
    Yattselev, Maxim L.
    [J]. ACTA MATHEMATICA, 2015, 215 (02) : 217 - 280
  • [7] PADE APPROXIMANTS TO CERTAIN ELLIPTIC-TYPE FUNCTIONS
    Baratchart, Laurent
    Yattselev, Maxim L.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2013, 121 : 31 - 86
  • [8] Asymptotics of Polynomials Orthogonal on a Cross with a Jacobi-Type Weight
    Barhoumi, Ahmad
    Yattselev, Maxim L.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [9] A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION
    DEIFT, P
    ZHOU, X
    [J]. ANNALS OF MATHEMATICS, 1993, 137 (02) : 295 - 368
  • [10] Farkas, 1980, GRADUATE TEXTS MATH, V71, DOI [10.1007/978-1-4684-9930-8, DOI 10.1007/978-1-4684-9930-8]