Non-Hermitian Orthogonal Polynomials on a Trefoil

被引:0
作者
Barhoumi, Ahmad B. [1 ]
Yattselev, Maxim L. [2 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Indiana Univ Purdue Univ Indianapolis, Dept Math Sci, 402 North Blackford St, Indianapolis, IN 46202 USA
基金
美国国家科学基金会;
关键词
Non-Hermitian orthogonality; Strong asymptotics; Pade approximation; Riemann-Hilbert analysis; PADE APPROXIMANTS; STRONG ASYMPTOTICS; CONVERGENCE;
D O I
10.1007/s00365-023-09640-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate asymptotic behavior of polynomials Q(n)(z) satisfying non-Hermitian orthogonality relations integral(Delta)s(k)Q(n)(s)rho(s)ds = 0, k is an element of{0,..., n - 1}, where Delta is a Chebotarev (minimal capacity) contour connecting three non-collinear points and rho(s) is a Jacobi-type weight including a possible power-type singularity at the Chebotarev center of Delta
引用
收藏
页码:271 / 331
页数:61
相关论文
共 28 条
[1]  
AKHIEZER NI, 1960, DOKL AKAD NAUK SSSR+, V134, P9
[2]  
[Anonymous], 1930, Berichte Leipzig
[3]   Pade approximants for functions with branch points - strong asymptotics of Nuttall-Stahl polynomials [J].
Aptekarev, Alexander I. ;
Yattselev, Maxim L. .
ACTA MATHEMATICA, 2015, 215 (02) :217-280
[4]   PADE APPROXIMANTS TO CERTAIN ELLIPTIC-TYPE FUNCTIONS [J].
Baratchart, Laurent ;
Yattselev, Maxim L. .
JOURNAL D ANALYSE MATHEMATIQUE, 2013, 121 :31-86
[5]   Asymptotics of Polynomials Orthogonal on a Cross with a Jacobi-Type Weight [J].
Barhoumi, Ahmad ;
Yattselev, Maxim L. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
[6]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[7]  
DEIFT P, 1999, COURANT LECT NOTES M, V3
[8]  
Farkas, 1980, GRADUATE TEXTS MATH, V71, DOI [10.1007/978-1-4684-9930-8, DOI 10.1007/978-1-4684-9930-8]
[9]   MONODROMY-PRESERVING AND SPECTRUM-PRESERVING DEFORMATIONS .1. [J].
FLASCHKA, H ;
NEWELL, AC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (01) :65-116
[10]  
Fokas A., 2006, Painleve Transcendents: The Riemann-Hilbert Approach, American Mathematical Society Mathematical Surveys and Monographs, 128, Providence, DOI [10.1090/surv/128, DOI 10.1090/SURV/128]