EEG-based Emotion Recognition via Transformer Neural Architecture Search

被引:55
作者
Li, Chang [1 ,2 ]
Zhang, Zhongzhen [1 ,2 ]
Zhang, Xiaodong [3 ]
Huang, Guoning [4 ]
Liu, Yu [1 ,2 ]
Chen, Xun [5 ,6 ]
机构
[1] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Anhui Prov Key Lab Measuring Theory & Precis Instr, Hefei 230009, Peoples R China
[3] Chongqing Key Lab Human Embryo Engn, Chongqing 400010, Peoples R China
[4] Reprod & Genet Inst, Chongqing Hlth Ctr Women & Children, Chongqing 400010, Peoples R China
[5] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Neurosurg, Div Life Sci & Med, Hefei 230001, Peoples R China
[6] Univ Sci & Technol China, Inst Adv Technol, USTC IAT Huami Joint Lab Brain Machine Intelligenc, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
Emotion recognition; Electroencephalography; Transformers; Feature extraction; Brain modeling; Task analysis; Computer architecture; Deep learning (DL); electroencephalogram (EEG); Index Terms; emotion recognition; transformer neural architecture search (TNAS); MODELS;
D O I
10.1109/TII.2022.3170422
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotion recognition based on electroencephalogram (EEG) plays an increasingly important role in the field of brain-computer interfaces. Recently, deep learning has been widely applied to EEG decoding owning to its excellent capabilities in automatic feature extraction. Transformer holds great superiority in processing time-series signals due to its long-term dependencies extraction ability. However, most existing transformer architectures are designed manually by human experts, which is a time-consuming and resource-intensive process. In this article, we propose an automatic transformer neural architectures search (TNAS) framework based on multiobjective evolution algorithm (MOEA) for the EEG-based emotion recognition. The proposed TNAS conducts the MOEA strategy that considers both accuracy and model size to discover the optimal model from well-trained supernet for the emotion recognition. We conducted extensive experiments to evaluate the performance of the proposed TNAS on the DEAP and DREAMER datasets. The experimental results showed that the proposed TNAS outperforms the state-of-the-art methods.
引用
收藏
页码:6016 / 6025
页数:10
相关论文
共 50 条
  • [31] A Coincidence-Filtering-Based Approach for CNNs in EEG-Based Recognition
    Gao, Zhongke
    Li, Yanli
    Yang, Yuxuan
    Dong, Na
    Yang, Xiong
    Grebogi, Celso
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (11) : 7159 - 7167
  • [32] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Li, Jinpeng
    Zhang, Zhaoxiang
    He, Huiguang
    COGNITIVE COMPUTATION, 2018, 10 (02) : 368 - 380
  • [33] Emotion recognition with convolutional neural network and EEG-based EFDMs
    Wang, Fei
    Wu, Shichao
    Zhang, Weiwei
    Xu, Zongfeng
    Zhang, Yahui
    Wu, Chengdong
    Coleman, Sonya
    NEUROPSYCHOLOGIA, 2020, 146
  • [34] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [35] EEG-Based BCI Emotion Recognition: A Survey
    Torres, Edgar P.
    Torres, Edgar A.
    Hernandez-Alvarez, Myriam
    Yoo, Sang Guun
    SENSORS, 2020, 20 (18) : 1 - 36
  • [36] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [37] GLADA: Global and Local Associative Domain Adaptation for EEG-Based Emotion Recognition
    Pan, Tianxu
    Su, Nuo
    Shan, Jun
    Tang, Yang
    Zhong, Guoqiang
    Jiang, Tianzi
    Zuo, Nianming
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2025, 17 (01) : 167 - 178
  • [38] Attention-Based Temporal Graph Representation Learning for EEG-Based Emotion Recognition
    Li, Chao
    Wang, Feng
    Zhao, Ziping
    Wang, Haishuai
    Schuller, Bjorn W.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (10) : 5755 - 5767
  • [39] Hierarchical Dynamic Graph Convolutional Network With Interpretability for EEG-Based Emotion Recognition
    Ye, Mengqing
    Chen, C. L. Philip
    Zhang, Tong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, : 1 - 12
  • [40] A Novel Dual-Task Model for EEG-Based Emotion and Cognition Recognition
    Jia, Zhe
    Ouyang, Yu
    Kong, Xinni
    Guo, Yaru
    Li, Zhongzheng
    Zeng, Hong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74