EEG-based Emotion Recognition via Transformer Neural Architecture Search

被引:55
作者
Li, Chang [1 ,2 ]
Zhang, Zhongzhen [1 ,2 ]
Zhang, Xiaodong [3 ]
Huang, Guoning [4 ]
Liu, Yu [1 ,2 ]
Chen, Xun [5 ,6 ]
机构
[1] Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Anhui Prov Key Lab Measuring Theory & Precis Instr, Hefei 230009, Peoples R China
[3] Chongqing Key Lab Human Embryo Engn, Chongqing 400010, Peoples R China
[4] Reprod & Genet Inst, Chongqing Hlth Ctr Women & Children, Chongqing 400010, Peoples R China
[5] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Neurosurg, Div Life Sci & Med, Hefei 230001, Peoples R China
[6] Univ Sci & Technol China, Inst Adv Technol, USTC IAT Huami Joint Lab Brain Machine Intelligenc, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
Emotion recognition; Electroencephalography; Transformers; Feature extraction; Brain modeling; Task analysis; Computer architecture; Deep learning (DL); electroencephalogram (EEG); Index Terms; emotion recognition; transformer neural architecture search (TNAS); MODELS;
D O I
10.1109/TII.2022.3170422
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Emotion recognition based on electroencephalogram (EEG) plays an increasingly important role in the field of brain-computer interfaces. Recently, deep learning has been widely applied to EEG decoding owning to its excellent capabilities in automatic feature extraction. Transformer holds great superiority in processing time-series signals due to its long-term dependencies extraction ability. However, most existing transformer architectures are designed manually by human experts, which is a time-consuming and resource-intensive process. In this article, we propose an automatic transformer neural architectures search (TNAS) framework based on multiobjective evolution algorithm (MOEA) for the EEG-based emotion recognition. The proposed TNAS conducts the MOEA strategy that considers both accuracy and model size to discover the optimal model from well-trained supernet for the emotion recognition. We conducted extensive experiments to evaluate the performance of the proposed TNAS on the DEAP and DREAMER datasets. The experimental results showed that the proposed TNAS outperforms the state-of-the-art methods.
引用
收藏
页码:6016 / 6025
页数:10
相关论文
共 50 条
  • [1] Spiking Spatiotemporal Neural Architecture Search for EEG-Based Emotion Recognition
    Li, Wei
    Zhu, Zhihao
    Shao, Shitong
    Lu, Yao
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [2] EEG-Based Emotion Recognition via Neural Architecture Search
    Li, Chang
    Zhang, Zhongzhen
    Song, Rencheng
    Cheng, Juan
    Liu, Yu
    Chen, Xun
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 957 - 968
  • [3] EEG-Based Emotion Recognition via Efficient Convolutional Neural Network and Contrastive Learning
    Li, Chang
    Lin, Xuejuan
    Liu, Yu
    Song, Rencheng
    Cheng, Juan
    Chen, Xun
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19608 - 19619
  • [4] AutoEER: automatic EEG-based emotion recognition with neural architecture search
    Wu, Yixiao
    Liu, Huan
    Zhang, Dalin
    Zhang, Yuzhe
    Lou, Tianyu
    Zheng, Qinghua
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (04)
  • [5] Spatiotemporal Gated Graph Transformer for EEG-Based Emotion Recognition
    Chang, Yadong
    Zheng, Xianwei
    Chen, Yijun
    Li, Xutao
    Miao, Qing
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1630 - 1634
  • [6] A Transformer Convolutional Network With the Method of Image Segmentation for EEG-Based Emotion Recognition
    Zhang, Xinyiy
    Cheng, Xiankai
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 401 - 405
  • [7] EEG-Based Emotion Recognition With Emotion Localization via Hierarchical Self-Attention
    Zhang, Yuzhe
    Liu, Huan
    Zhang, Dalin
    Chen, Xuxu
    Qin, Tao
    Zheng, Qinghua
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2458 - 2469
  • [8] EEG-Based Sleep Stage Classification via Neural Architecture Search
    Kong, Gangwei
    Li, Chang
    Peng, Hu
    Han, Zhihui
    Qiao, Heyuan
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 1075 - 1085
  • [9] A Channel-Fused Dense Convolutional Network for EEG-Based Emotion Recognition
    Gao, Zhongke
    Wang, Xinmin
    Yang, Yuxuan
    Li, Yanli
    Ma, Kai
    Chen, Guanrong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (04) : 945 - 954
  • [10] Normal Inverse Gaussian Features for EEG-Based Automatic Emotion Recognition
    Pusarla, Nalini
    Singh, Anurag
    Tripathi, Shrivishal
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71