COMPUTER-ASSISTED PROOF OF SHEAR-INDUCED CHAOS IN STOCHASTICALLY PERTURBED HOPF SYSTEMS

被引:5
作者
Breden, Maxime [1 ]
Engel, Maximilian [2 ]
机构
[1] Ecole Polytech, CMAP, Palaiseau, France
[2] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
Homotopy method; Kolmogorov operators; Lyapunov exponents; quasi-ergodic dis-tribution; NUMERICAL VERIFICATION; EXISTENCE;
D O I
10.1214/22-AAP1841
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We confirm a long-standing conjecture concerning shear-induced chaos in stochastically perturbed systems exhibiting a Hopf bifurcation. The method of showing the main chaotic property, a positive Lyapunov exponent, is a computer-assisted proof. Using the recently developed theory of conditioned Lyapunov exponents on bounded domains and the modified Furstenberg- Khasminskii formula, the problem boils down to the rigorous computation of eigenfunctions of the Kolmogorov operators describing distributions of the underlying stochastic process.
引用
收藏
页码:1052 / 1094
页数:43
相关论文
共 59 条
[51]  
Tucker W, 2002, FOUND COMPUT MATH, V2, P53, DOI 10.1007/s102080010018
[52]  
Tucker W, 2011, Validated Numerics: A Short Introduction to Rigorous Computations
[53]  
Urabe M., 1965, Archive for Rational Mechanics and Analysis, V20, P120, DOI [DOI 10.1007/BF00284614, 10.1007/BF00284614]
[54]  
van den Berg J. B., 2015, NOTICES AM MATH SOC, V62, P1057, DOI DOI 10.1090/NOTI1276
[55]   Some improvements of invertibility verifications for second-order linear elliptic operators [J].
Watanabe, Yoshitaka ;
Kinoshita, Takehiko ;
Nakao, Mitsuhiro T. .
APPLIED NUMERICAL MATHEMATICS, 2020, 154 :36-46
[56]   Stochastic bifurcation in noise-driven lasers and Hopf oscillators [J].
Wieczorek, Sebastian .
PHYSICAL REVIEW E, 2009, 79 (03)
[57]  
YAGLOM A. M., 1947, Doklady Akad. Nauk SSSR (NS), V56, P795
[58]   Numerical verification method for solutions of boundary value problems with local uniqueness by Banach's fixed-point theorem [J].
Yamamoto, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :2004-2013
[59]   Chaotic phenomena in three settings: large, noisy and out of equilibrium [J].
Young, Lai-Sang .
NONLINEARITY, 2008, 21 (11) :T245-T252