COMPUTER-ASSISTED PROOF OF SHEAR-INDUCED CHAOS IN STOCHASTICALLY PERTURBED HOPF SYSTEMS

被引:5
作者
Breden, Maxime [1 ]
Engel, Maximilian [2 ]
机构
[1] Ecole Polytech, CMAP, Palaiseau, France
[2] Free Univ Berlin, Dept Math & Comp Sci, Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
Homotopy method; Kolmogorov operators; Lyapunov exponents; quasi-ergodic dis-tribution; NUMERICAL VERIFICATION; EXISTENCE;
D O I
10.1214/22-AAP1841
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We confirm a long-standing conjecture concerning shear-induced chaos in stochastically perturbed systems exhibiting a Hopf bifurcation. The method of showing the main chaotic property, a positive Lyapunov exponent, is a computer-assisted proof. Using the recently developed theory of conditioned Lyapunov exponents on bounded domains and the modified Furstenberg- Khasminskii formula, the problem boils down to the rigorous computation of eigenfunctions of the Kolmogorov operators describing distributions of the underlying stochastic process.
引用
收藏
页码:1052 / 1094
页数:43
相关论文
共 59 条
[1]  
[Anonymous], 1998, RANDOM DYNAMICAL SYS
[2]   Two novel methods and multi-mode periodic solutions for the Fermi-Pasta-Ulam model [J].
Arioli, G ;
Koch, H ;
Terracini, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 255 (01) :1-19
[3]   Non-radial solutions for some semilinear elliptic equations on the disk [J].
Arioli, Gianni ;
Koch, Hans .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 179 :294-308
[4]  
BAXENDALE P. H., 1991, SPATIAL STOCHASTIC P
[5]   A regularity method for lower bounds on the Lyapunov exponent for stochastic differential equations [J].
Bedrossian, Jacob ;
Blumenthal, Alex ;
Punshon-Smith, Sam .
INVENTIONES MATHEMATICAE, 2022, 227 (02) :429-516
[6]  
BEHNKE H., 1994, STUD COMPUT MATH, P5277, DOI [10.1016/0021-8502(94)90369-7[7, DOI 10.1016/0021-8502(94)90369-7[7]
[7]  
BLACKBEARD N., 2014, PHYSICA D, V286-28743-58
[8]   Shear-Induced Bifurcations and Chaos in Models of Three Coupled Lasers [J].
Blackbeard, Nicholas ;
Erzgraeber, Hartmut ;
Wieczorek, Sebastian .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (02) :469-509
[9]   Lyapunov exponents for random perturbations of some area-preserving maps including the standard map [J].
Blumenthal, Alex ;
Xue, Jinxin ;
Young, Lai-Sang .
ANNALS OF MATHEMATICS, 2017, 185 (01) :285-310
[10]  
BREDEN M., 2021, MATLAB CODE COMPUTER