Graphene Nanogap Interdigitated Asymmetric Electrodes for Photodetection

被引:3
|
作者
Elkarous, Rabiaa [1 ,2 ]
Bardaoui, Afrah [1 ]
Borme, Jerome [3 ]
Sghaier, Nabil [1 ]
Alpuim, Pedro [3 ,4 ]
Santos, Diogo M. F. [5 ]
Chtourou, Radhouane [1 ]
机构
[1] Res & Technol Ctr Energy CRTEn, Lab Nanomat & Syst Renewable Energies LaNSER, Borj Cedria Sci & Technol Pk, Hammam Lif 2050, Tunisia
[2] Univ Tunis El Manar, Fac Sci Tunis FST, Campus Univ Manar, Tunis 2092, Tunisia
[3] Int Iberian Nanotechnol Lab, 2D Mat & Devices Grp, P-4715330 Braga, Portugal
[4] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
[5] Univ Lisbon, Ctr Phys & Engn Adv Mat, Chem Engn Dept, Lab Phys Mat & Emerging Technol, P-1049001 Lisbon, Portugal
关键词
graphene; photodetector; interdigitated electrode; 100 nm gap; asymmetric structure; electron-beam lithography; RAMAN-SPECTROSCOPY; CVD GRAPHENE; PHOTORESPONSE; ENHANCEMENT; GENERATION; DYNAMICS;
D O I
10.3390/chemosensors11030181
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work proposes a high-performance asymmetric gold/graphene/platinum photodetector. The new photodetector, operating without bias, integrates interdigitated 100 nm spaced metallic contacts that induce a built-in potential and a short carrier path, allowing an improvement in the separation and collection of the photocarriers. A chemical vapor deposition graphene layer is transferred onto the interdigitated electrodes elaborated using high-resolution electron-beam lithography. Three devices with different side dimensions (100, 1000, and 3000 mu m) are fabricated, and their photoresponsivities are evaluated at different wavelengths. The 100 mu m device shows the highest photoresponsivity of 358 A/W at a 400 nm illumination. These promising results confirm the proposed design's ability to increase the photodetector's active area, improve light absorption, and achieve high separation and collection of photogenerated carriers. This makes it of great interest for optoelectronic applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes
    Mir Mehdi Hashemi
    Alireza Nikfarjam
    Hasan Raji
    Microsystem Technologies, 2019, 25 : 541 - 549
  • [42] Assembly of Molecular Nanomagnets Into Nanogap Electrodes by Dielectrophoresis
    Vaheb, Y.
    Calvet, L. E.
    Dia, N.
    Mallah, T.
    Catala, L.
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2012, 12 (11) : 8710 - 8714
  • [43] Fabrication of Nanogap Electrodes using Electrodeposition Process
    Kobayashi, C.
    Yoshida, S.
    Saito, M.
    Wakayama, Y.
    Homma, T.
    ELECTRODEPOSITION OF NANOENGINEERED MATERIALS AND DEVICES 3, 2010, 25 (41): : 29 - 40
  • [44] Novel fabrication of extremely high aspect ratio and straight nanogap and array nanogap electrodes
    Hashemi, Mir Mehdi
    Nikfarjam, Alireza
    Raji, Hasan
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2019, 25 (02): : 541 - 549
  • [45] Conductance through glycine in a graphene nanogap
    Puspitapallab Chaudhuri
    H. O. Frota
    Cicero Mota
    Angsula Ghosh
    Journal of Nanoparticle Research, 2018, 20
  • [46] Conductance through glycine in a graphene nanogap
    Chaudhuri, Puspitapallab
    Frota, H. O.
    Mota, Cicero
    Ghosh, Angsula
    JOURNAL OF NANOPARTICLE RESEARCH, 2018, 20 (06)
  • [47] A simple method for filling nanogap electrodes with polymer
    Govor, L. V.
    Bauer, G. H.
    Parisi, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (03):
  • [48] Electrochemical Characterization of Nanogap Interdigitated Electrode Arrays for Lab-on-a-Chip Applications
    Matylitskaya, Volha
    Kasemann, Stephan
    Urban, Gerald
    Dincer, Can
    Partel, Stefan
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (03) : B127 - B134
  • [49] Integrated Glass Microfluidics with Electrochemical Nanogap Electrodes
    Sarkar, Sahana
    Nieuwenhuis, Ab F.
    Lemay, Serge G.
    ANALYTICAL CHEMISTRY, 2023, 95 (09) : 4266 - 4270
  • [50] Fabrication of Nanogap Electrodes by the Molecular Lithography Technique
    Nishino, Takayuki
    Negishi, Ryota
    Tanaka, Hirofumi
    Ogawa, Takuji
    Ishibashi, Koji
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (03)