Solid-State Electrolytes in Lithium-Sulfur Batteries: Latest Progresses and Prospects

被引:57
作者
Xian, Chunxiang [1 ]
Wang, Qiyue [2 ]
Xia, Yang [2 ]
Cao, Feng [3 ]
Shen, Shenghui [1 ]
Zhang, Yongqi [4 ]
Chen, Minghua [5 ]
Zhong, Yu [1 ]
Zhang, Jun [2 ]
He, Xinping [2 ]
Xia, Xinhui [1 ,2 ]
Zhang, Wenkui [2 ]
Tu, Jiangping [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Prov, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
[3] Huzhou Coll, Dept Engn Technol, Huzhou 313000, Peoples R China
[4] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611371, Peoples R China
[5] Harbin Univ Sci & Technol, Sch Elect & Elect Engn, Key Lab Engn Dielect & Applicat, Minist Educ, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
electrochemical energy; Li metals; lithium-sulfur batteries; solid-state electrolytes; sulfur cathodes; LI-S BATTERIES; HIGH IONIC-CONDUCTIVITY; POLYMER-ELECTROLYTE; CRYSTAL-STRUCTURE; SUPERIONIC CONDUCTORS; ELECTROCHEMICAL PERFORMANCE; INTERFACIAL MODIFICATION; MESOPOROUS ELECTRODE; INTERPHASE FORMATION; LIQUID ELECTROLYTES;
D O I
10.1002/smll.202208164
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state lithium-sulfur batteries (SSLSBs) have attracted tremendous research interest due to their large theoretical energy density and high safety, which are highly important indicators for the development of next-generation energy storage devices. Particularly, safety and "shuttle effect" issues originating from volatile and flammable liquid organic electrolytes can be fully mitigated by switching to a solid-state configuration. However, their road to thecommercial application is still plagued with numerous challenges, most notably the intrinsic electrochemical instability of solid-state electrolytes (SSEs) materials and their interfacial compatibility with electrodes and electrolytes. In this review, a critical discussion on the key issues and problems of different types of SSEs as well as the corresponding optimization strategies are first highlighted. Then, the state-of-the-art preparation methods and properties of different kinds of SSE materials, and their manufacture, characterization and performance in SSLSBs are summarized in detail. Finally, a scientific outlook for the future development of SSEs and the avenue to commercial application of SSLSBs is also proposed.
引用
收藏
页数:35
相关论文
共 299 条
  • [1] Li7La3Zr2O12 sheet-based framework for high-performance lithium-sulfur hybrid quasi-solid battery
    AbdelHamid, Ayman A.
    Cheong, Jian Liang
    Ying, Jackie Y.
    [J]. NANO ENERGY, 2020, 71
  • [2] Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution
    Adeli, Parvin
    Bazak, J. David
    Park, Kern Ho
    Kochetkov, Ivan
    Huq, Ashfia
    Goward, Gillian R.
    Nazar, Linda F.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) : 8681 - 8686
  • [3] Enhanced Air Stability and High Li-Ion Conductivity of Li6.988P2.994Nb0.2S10.934O0.6 Glass-Ceramic Electrolyte for All-Solid-State Lithium-Sulfur Batteries
    Ahmad, Niaz
    Zhou, Lei
    Faheem, Muhammad
    Tufail, Muhammad Khurram
    Yang, Le
    Chen, Renjie
    Zhou, Yaodan
    Yang, Wen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (19) : 21548 - 21558
  • [4] Progress in Solid Polymer Electrolytes for Lithium-Ion Batteries and Beyond
    An, Yong
    Han, Xue
    Liu, Yuyang
    Azhar, Alowasheeir
    Na, Jongbeom
    Nanjundan, Ashok Kumar
    Wang, Shengping
    Yu, Jingxian
    Yamauchi, Yusuke
    [J]. SMALL, 2022, 18 (03)
  • [5] Polymer electrolytes for lithium ion batteries: a critical study
    Arya, Anil
    Sharma, A. L.
    [J]. IONICS, 2017, 23 (03) : 497 - 540
  • [6] Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure
    Awaka, Junji
    Kijima, Norihito
    Hayakawa, Hiroshi
    Akimoto, Junji
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) : 2046 - 2052
  • [7] Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
    Bachman, John Christopher
    Muy, Sokseiha
    Grimaud, Alexis
    Chang, Hao-Hsun
    Pour, Nir
    Lux, Simon F.
    Paschos, Odysseas
    Maglia, Filippo
    Lupart, Saskia
    Lamp, Peter
    Giordano, Livia
    Shao-Horn, Yang
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 140 - 162
  • [8] LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries
    Bag, Sourav
    Zhou, Chengtian
    Kim, Patrick J.
    Pol, Vilas G.
    Thangadurai, Venkataraman
    [J]. ENERGY STORAGE MATERIALS, 2020, 24 : 198 - 207
  • [9] Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li-S battery
    Bai, Yang
    Zhao, Yanbiao
    Li, Weidong
    Meng, Linghui
    Bai, Yongping
    Chen, Guorong
    [J]. CHEMICAL ENGINEERING JOURNAL, 2020, 396
  • [10] Lithium-sulfur batteries-the solution is in the electrolyte, but is the electrolyte a solution?
    Barghamadi, Marzieh
    Best, Adam S.
    Bhatt, Anand I.
    Hollenkamp, Anthony F.
    Musameh, Mustafa
    Rees, Robert J.
    Ruether, Thomas
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) : 3902 - 3920