The axiom of choice in metric measure spaces and maximal d -separated sets

被引:0
作者
Dybowski, Michal [1 ]
Gorka, Przemyslaw [1 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, Pl Politech 1, PL-00661 Warsaw, Poland
关键词
Axiom of choice; Dependent choice; Countable choice; delta-separated sets; Borel measure; Doubling measure; Doubling metric space;
D O I
10.1007/s00153-023-00868-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Axiom of Countable Choice is necessary and sufficient to prove that the existence of a Borel measure on a pseudometric space such that the measure of open balls is positive and finite implies separability of the space. In this way a negative answer to an open problem formulated in G & oacute;rka (Am Math Mon 128:84-86, 2020) is given. Moreover, we study existence of maximal delta -separated sets in metric and pseudometric spaces from the point of view the Axiom of Choice and its weaker forms.
引用
收藏
页码:735 / 749
页数:15
相关论文
共 50 条
[41]   Optimal embeddings for Triebel-Lizorkin and Besov spaces on quasi-metric measure spaces [J].
Alvarado, Ryan ;
Yang, Dachun ;
Yuan, Wen .
MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (03)
[42]   Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property [J].
Jeff Cheeger ;
Bruce Kleiner .
Geometric and Functional Analysis, 2009, 19 :1017-1028
[43]   Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces [J].
Koskela, P ;
Rajala, K ;
Shanmugalingam, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (01) :147-173
[44]   Median-Type John–Nirenberg Space in Metric Measure Spaces [J].
Kim Myyryläinen .
The Journal of Geometric Analysis, 2022, 32
[45]   Gehring's Lemma and Reverse Holder Classes on Metric Measure Spaces [J].
Kinnunen, Juha ;
Shukla, Parantap .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (2-3) :295-314
[47]   Fine properties of Newtonian functions and the Sobolev capacity on metric measure spaces [J].
Maly, Lukas .
REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (01) :219-255
[48]   The rate of convergence of Steklov means on metric measure spaces and Hausdorff dimension [J].
V. G. Krotov ;
M. A. Prokhorovich .
Mathematical Notes, 2011, 89 :156-159
[49]   The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension [J].
Krotov, V. G. ;
Prokhorovich, M. A. .
MATHEMATICAL NOTES, 2011, 89 (1-2) :156-159
[50]   The Dirichlet Problem for p-minimizers on Finely Open Sets in Metric Spaces [J].
Anders Björn ;
Jana Björn ;
Visa Latvala .
Potential Analysis, 2023, 59 :1117-1140