The axiom of choice in metric measure spaces and maximal d -separated sets

被引:0
作者
Dybowski, Michal [1 ]
Gorka, Przemyslaw [1 ]
机构
[1] Warsaw Univ Technol, Dept Math & Informat Sci, Pl Politech 1, PL-00661 Warsaw, Poland
关键词
Axiom of choice; Dependent choice; Countable choice; delta-separated sets; Borel measure; Doubling measure; Doubling metric space;
D O I
10.1007/s00153-023-00868-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the Axiom of Countable Choice is necessary and sufficient to prove that the existence of a Borel measure on a pseudometric space such that the measure of open balls is positive and finite implies separability of the space. In this way a negative answer to an open problem formulated in G & oacute;rka (Am Math Mon 128:84-86, 2020) is given. Moreover, we study existence of maximal delta -separated sets in metric and pseudometric spaces from the point of view the Axiom of Choice and its weaker forms.
引用
收藏
页码:735 / 749
页数:15
相关论文
共 50 条
  • [21] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    [J]. Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [22] CAMPANATO THEOREM ON METRIC MEASURE SPACES
    Gorka, Przemyslaw
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (02) : 523 - 528
  • [23] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [25] Heat Kernels on Metric Spaces with Doubling Measure
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    [J]. FRACTAL GEOMETRY AND STOCHASTICS IV, 2009, 61 : 3 - +
  • [26] Modulus and the Poincaré inequality on metric measure spaces
    Stephen Keith
    [J]. Mathematische Zeitschrift, 2003, 245 : 255 - 292
  • [27] The Variational Capacity with Respect to Nonopen Sets in Metric Spaces
    Bjorn, Anders
    Bjorn, Jana
    [J]. POTENTIAL ANALYSIS, 2014, 40 (01) : 57 - 80
  • [28] Approximations by regular sets and Wiener solutions in metric spaces
    Bjorn, Anders
    Bjorn, Jana
    [J]. COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2007, 48 (02): : 343 - 355
  • [29] Thin and fat sets for doubling measures in metric spaces
    Ojala, Tuomo
    Rajala, Tapio
    Suomala, Ville
    [J]. STUDIA MATHEMATICA, 2012, 208 (03) : 195 - 211
  • [30] The Variational Capacity with Respect to Nonopen Sets in Metric Spaces
    Anders Björn
    Jana Björn
    [J]. Potential Analysis, 2014, 40 : 57 - 80