Green and sustainable route for the efficient leaching and recovery of valuable metals from spent Ni-Cd batteries

被引:22
作者
Rana, Masud [1 ]
Khan, Md Ishtiaq Hossain [1 ]
Nshizirungu, Theoneste [1 ]
Jo, Young-Tae [1 ]
Park, Jeong-Hun [1 ]
机构
[1] Chonnam Natl Univ, Dept Environm & Energy Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
基金
新加坡国家研究基金会;
关键词
Spent Ni-Cd batteries; Response surface methodology; Recycling; Formic acid; Hydrogen peroxide; NICKEL-CADMIUM BATTERIES; ELECTROCHEMICAL RECOVERY; NEGATIVE ELECTRODES; SOLVENT-EXTRACTION; SEPARATION; ACID; COBALT; KINETICS; LIQUORS; MIXTURE;
D O I
10.1016/j.cej.2022.140626
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recycling of Ni, Cd and Co from spent Ni-Cd batteries is significant for preventing nickel and cobalt deficiency and protecting the environment. Although several studies have developed methods for recycling these metals from spent Ni-Cd batteries, the simultaneous leaching (extraction) and recovery of Ni, Cd and Co via an environmentally benign and economical manner is still challenging. Herein, a formic acid-assisted method for leaching and recovering valuable metals from the cathode and anode materials of spent Ni-Cd batteries is proposed. The effects of temperature, time, and liquid/solid ratio on Ni, Cd, and Co leaching were also exten-sively investigated. The single factor experimental results and statistical analysis revealed that more than 95 % leaching efficiencies of Cd and Co could be achieved from the cathode and anode materials at 80 degrees C and 2.5 h, while a maximum of 81 % Ni leaching was attained in formic acid at 90 degrees C, 4 h and a 30 mL/g liquid/solid ratio. Moreover, the statistical analysis results revealed that the temperature and time had significant effect (rho < 0.0001) on Ni and Cd leaching. It was difficult to leach metallic Ni present in the cathode material because of its high inertness property; however, a conversion of 99.70 % Ni was achieved at 60 degrees C for 2 h when H2O2 (15 %, v/ v) was used as an oxidizing agent. The findings of this study suggest that the formic acid-assisted recycling process could be a sustainable alternative for the efficient leaching and recovery of valuable metals from spent Ni-Cd batteries because it features a reduced highly corrosive acid consumption, mild leaching conditions, and less environmental footprints.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol
    Kong, Lingyu
    Wang, Zhaowen
    Shi, Zhongning
    Hu, Xianwei
    Liu, Aimin
    Tao, Wenju
    Wang, Benping
    Wang, Qian
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (02) : 4258 - 4268
  • [22] Separation and Recovery of Valuable Metals from Ammonia Leaching Solution of Spent Lithium-Ion Batteries
    Yu, Jiancheng
    Ma, Baozhong
    Qiu, Zhijun
    Wang, Chengyan
    Chen, Yongqiang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (26) : 9738 - 9750
  • [23] Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries
    Li, Li
    Qu, Wenjie
    Zhang, Xiaoxiao
    Lu, Jun
    Chen, Renjie
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2015, 282 : 544 - 551
  • [24] Recovery of valuable metals and modification of cathode materials from spent lithium-ion batteries
    Tang, Xin
    Tang, Wei
    Duan, Jidong
    Yang, Wenping
    Wang, Rui
    Tang, Manqin
    Li, Jing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 874
  • [25] Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process
    Chen, Xiangping
    Luo, Chuanbao
    Zhang, Jinxia
    Kong, Jiangrong
    Zhou, Tao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (12): : 3104 - 3113
  • [26] New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni-Cd batteries by solvent extraction
    Nogueira, CA
    Delmas, F
    HYDROMETALLURGY, 1999, 52 (03) : 267 - 287
  • [27] Leaching Kinetics of Valuable Metals from Calcined Material of Spent Lithium-Ion Batteries
    Wongnaree, Natcha
    Patcharawit, Tapany
    Yingnakorn, Tanongsak
    Khumkoa, Sakhob
    ACS OMEGA, 2024, 9 (47): : 46822 - 46833
  • [28] A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching
    Ma, Yayun
    Tang, Jingjing
    Wanaldi, Rizky
    Zhou, Xiangyang
    Wang, Hui
    Zhou, Changyou
    Yang, Juan
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 402
  • [29] Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect
    Sun, Conghao
    Xu, Liping
    Chen, Xiangping
    Qiu, Tianyun
    Zhou, Tao
    WASTE MANAGEMENT & RESEARCH, 2018, 36 (02) : 113 - 120
  • [30] Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process
    Li, Li
    Zhai, Longyu
    Zhang, Xiaoxiao
    Lu, Jun
    Chen, Renjie
    Wu, Feng
    Amine, Khalil
    JOURNAL OF POWER SOURCES, 2014, 262 : 380 - 385