Solutions to the (4+1)-Dimensional Time-Fractional Fokas Equation with M-Truncated Derivative

被引:33
作者
Mohammed, Wael W. [1 ,2 ]
Cesarano, Clemente [3 ]
Al-Askar, Farah M. [4 ]
机构
[1] Univ Hail, Fac Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Int Telemat Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II,39, I-00186 Rome, Italy
[4] Princess Nourah Bint Abdulrahman Univ, Dept Math Sci, Coll Sci, POB 84428, Riyadh 11671, Saudi Arabia
关键词
fractional Fokas; Jacobi elliptic function method; extended tanh-coth method; TRAVELING-WAVE SOLUTIONS; SYMMETRY;
D O I
10.3390/math11010194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the (4+1)-dimensional fractional Fokas equation (FFE) with an M-truncated derivative. The extended tanh-coth method and the Jacobi elliptic function method are utilized to attain new hyperbolic, trigonometric, elliptic, and rational fractional solutions. In addition, we generalize some previous results. The acquired solutions are beneficial in analyzing definite intriguing physical phenomena because the FFE equation is crucial for explaining various phenomena in optics, fluid mechanics and ocean engineering. To demonstrate how the M-truncated derivative affects the analytical solutions of the FFE, we simulate our figures in MATLAB and show several 2D and 3D graphs.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Resonant optical soliton solutions for time-fractional nonlinear Schrodinger equation in optical fibers [J].
Murad, Muhammad Amin Sadiq ;
Ismael, Hajar F. ;
Sulaiman, Tukur Abdulkadir .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2025, 34 (07)
[32]   Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas and (2+1)-dimensional breaking soliton equations [J].
Kumar, Sachin ;
Niwas, Monika ;
Osman, M. S. ;
Abdou, M. A. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (10)
[33]   SOME ANALYTICAL SOLUTIONS BY MAPPING METHODS FOR NON-LINEAR CONFORMABLE TIME-FRACTIONAL PHI-4 EQUATION [J].
Korpinar, Zeliha .
THERMAL SCIENCE, 2019, 23 :S1815-S1822
[34]   On the absence of weak solutions for a sequential time-fractional Klein-Gordon equation with quadratic nonlinearity [J].
Agarwal, Praveen ;
Jleli, Mohamed ;
Samet, Bessem .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
[35]   New soliton solutions to the nonlinear complex fractional Schrodinger equation and the conformable time-fractional Klein-Gordon equation with quadratic and cubic nonlinearity [J].
Alam, Md Nur ;
Li, Xin .
PHYSICA SCRIPTA, 2020, 95 (04)
[36]   New explicit solitons for the general modified fractional Degasperis-Procesi-Camassa-Holm equation with a truncated M-fractional derivative [J].
Hong, Xiao ;
Davodi, A. G. ;
Mirhosseini-Alizamini, S. M. ;
Khater, M. M. A. ;
Inc, Mustafa .
MODERN PHYSICS LETTERS B, 2021, 35 (33)
[37]   Unraveling the (4+1)-dimensional Davey-Stewartson-KadomtsevPetviashvili equation: Exploring soliton solutions via multiple techniques [J].
Rehman, Hamood Ur ;
Said, Ghada S. ;
Amer, Aamna ;
Ashraf, Hameed ;
Tharwat, M. M. ;
Abdel-Aty, Mahmoud ;
Elazab, Nasser S. ;
Osman, M. S. .
ALEXANDRIA ENGINEERING JOURNAL, 2024, 90 :17-23
[38]   Optical soliton solutions to the time-fractional Kundu-Eckhaus equation through the (G' /G, 1/G)-expansion technique [J].
Akbar, M. Ali ;
Abdullah, Farah Aini ;
Khatun, Mst. Munny .
OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)
[39]   Exact solutions to conformable time-fractional Klein-Gordon equation with high-order nonlinearities [J].
Tang, Li .
RESULTS IN PHYSICS, 2020, 18
[40]   Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation [J].
Kai, Yue ;
Chen, Shuangqing ;
Zhang, Kai ;
Yin, Zhixiang .
WAVES IN RANDOM AND COMPLEX MEDIA, 2022, :2539-2550