High-dimensional SO(4)-symmetric Rydberg manifolds for quantum simulation

被引:12
作者
Kruckenhauser, Andreas [1 ,2 ]
van Bijnen, Rick [1 ,2 ]
Zache, Torsten, V [1 ,2 ]
Di Liberto, Marco [1 ,2 ]
Zoller, Peter [1 ,2 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[2] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
基金
奥地利科学基金会;
关键词
quantum simulation; Rydberg atoms; quantum field theory; quantum spin models; HYDROGEN-ATOM; GAUGE-INVARIANCE; SINGLE ATOMS; FALSE VACUUM; STATES; DYNAMICS; MATTER; REALIZATION; LATTICE; FIELDS;
D O I
10.1088/2058-9565/aca996
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a toolbox for manipulating arrays of Rydberg atoms prepared in high-dimensional hydrogen-like manifolds in the regime of linear Stark and Zeeman effect. We exploit the SO(4) symmetry to characterize the action of static electric and magnetic fields as well as microwave and optical fields on the well-structured manifolds of states with principal quantum number n. This enables us to construct generalized large-spin Heisenberg models for which we develop state-preparation and readout schemes. Due to the available large internal Hilbert space, these models provide a natural framework for the quantum simulation of quantum field theories, which we illustrate for the case of the sine-Gordon and massive Schwinger models. Moreover, these high-dimensional manifolds also offer the opportunity to perform quantum information processing operations for qudit-based quantum computing, which we exemplify with an entangling gate and a state-transfer protocol for the states in the neighborhood of the circular Rydberg level.
引用
收藏
页数:33
相关论文
共 160 条
[1]  
Abdalla E., 2001, Non-Perturbative Methods in 2 Dimensional Quantum Field Theory
[2]   Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum [J].
Abel, Steven ;
Spannowsky, Michael .
PRX QUANTUM, 2021, 2 (01)
[3]   Quantum Simulators: Architectures and Opportunities [J].
Altman, Ehud ;
Brown, Kenneth R. ;
Carleo, Giuseppe ;
Carr, Lincoln D. ;
Demler, Eugene ;
Chin, Cheng ;
DeMarco, Brian ;
Economou, Sophia E. ;
Eriksson, Mark A. ;
Fu, Kai-Mei C. ;
Greiner, Markus ;
Hazzard, Kaden R. A. ;
Hulet, Randall G. ;
Kollar, Alicia J. ;
Lev, Benjamin L. ;
Lukin, Mikhail D. ;
Ma, Ruichao ;
Mi, Xiao ;
Misra, Shashank ;
Monroe, Christopher ;
Murch, Kater ;
Nazario, Zaira ;
Ni, Kang-Kuen ;
Potter, Andrew C. ;
Roushan, Pedram ;
Saffman, Mark ;
Schleier-Smith, Monika ;
Siddiqi, Irfan ;
Simmonds, Raymond ;
Singh, Meenakshi ;
Spielman, I. B. ;
Temme, Kristan ;
Weiss, David S. ;
Vuckovic, Jelena ;
Vuletic, Vladan ;
Ye, Jun ;
Zwierlein, Martin .
PRX QUANTUM, 2021, 2 (01)
[4]   An optical tweezer array of ultracold molecules [J].
Anderegg, Loic ;
Cheuk, Lawrence W. ;
Bao, Yicheng ;
Burchesky, Sean ;
Ketterle, Wolfgang ;
Ni, Kang-Kuen ;
Doyle, John M. .
SCIENCE, 2019, 365 (6458) :1156-+
[5]   Trapping Rydberg Atoms in an Optical Lattice [J].
Anderson, S. E. ;
Younge, K. C. ;
Raithel, G. .
PHYSICAL REVIEW LETTERS, 2011, 107 (26)
[6]  
[Anonymous], 2003, International Series of Monographs on Physics
[7]  
Auerbach A., 2012, Interacting Electrons and Quantum Magnetism
[8]   Multichannel Rydberg spectroscopy of complex atoms [J].
Aymar, M ;
Greene, CH ;
LucKoenig, E .
REVIEWS OF MODERN PHYSICS, 1996, 68 (04) :1015-1123
[9]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[10]   Simulating lattice gauge theories within quantum technologies [J].
Banuls, Mari Carmen ;
Blatt, Rainer ;
Catani, Jacopo ;
Celi, Alessio ;
Cirac, Juan Ignacio ;
Dalmonte, Marcello ;
Fallani, Leonardo ;
Jansen, Karl ;
Lewenstein, Maciej ;
Montangero, Simone ;
Muschik, Christine A. ;
Reznik, Benni ;
Rico, Enrique ;
Tagliacozzo, Luca ;
Van Acoleyen, Karel ;
Verstraete, Frank ;
Wiese, Uwe-Jens ;
Wingate, Matthew ;
Zakrzewski, Jakub ;
Zoller, Peter .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)