APPROXIMATION BY DURRMEYER VARIANT OF CHENEY-SHARMA CHLODOVSKY OPERATORS

被引:1
作者
Prakash, Chandra [1 ]
Verma, Durvesh Kumar [2 ]
Deo, Naokant [1 ]
机构
[1] Delhi Technol Univ, Dept Math, Delhi 110042, India
[2] Univ Delhi, Dept Math, Miranda House, Delhi 110007, India
来源
MATHEMATICAL FOUNDATIONS OF COMPUTING | 2023年 / 6卷 / 03期
关键词
Cheney-Sharma-Chlodovsky operators; Lipschitz-type space; weighted approximation; modulus of continuity; A-statistical approximation; LOCAL APPROXIMATION;
D O I
10.3934/mfc.2022034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we are dealing with Cheney-Sharma Chlodovsky Durrmeyer operators and studying their approximation properties. The Bohman-Korovkin theorem is verified and estimated the convergence properties using of modulus of continuity, Lipschitz- type space, and Ditzian-Totik modulus of continuity. After that, the weighted approximation result is also given. Finally, some results related to the A-statistical convergence of the operators are obtained.
引用
收藏
页码:535 / 545
页数:11
相关论文
共 33 条
[1]  
Abel N. H., 1839, JOURN F UR REINE ANG, V1, P159
[2]  
Abel U., 2005, Anal. Theory Appl., V21, P15
[3]  
Abel U., 2004, Mediterr. J. Math., V1, P487
[4]   Local approximation by a variant of Bernstein-Durrmeyer operators [J].
Abel, Ulrich ;
Gupta, Vijay ;
Mohapatra, Ram N. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (11) :3372-3381
[5]   Local approximation by generalized Baskakov-Durrmeyer operators [J].
Abel, Ulrich ;
Ivan, Mircea ;
Li, Zhongkai .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (3-4) :245-264
[6]   The Durrmeyer variant of an operator defined by DD Stancu [J].
Abel, Ulrich ;
Ivan, Mircea ;
Paltanea, Radu .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :116-123
[7]   Voronovskaya type results for Bernstein-Chlodovsky operators preserving e-2x [J].
Acar, Tuncer ;
Cappelletti Montano, Mirella ;
Garrancho, Pedro ;
Leonessa, Vita .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)
[8]  
Acar T, 2019, B BELG MATH SOC-SIM, V26, P681
[9]   Weighted Approximation by New Bernstein-Chlodowsky-Gadjiev Operators [J].
Aral, Ali ;
Acar, Tuncer .
FILOMAT, 2013, 27 (02) :371-380
[10]   THE MEASURE THEORETIC APPROACH TO DENSITY [J].
BUCK, RC .
AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (04) :560-580