Robust fractional-order [proportional integral derivative] controller design with specification constraints: more flat phase idea

被引:14
作者
Wu, Zhenlong [1 ]
Viola, Jairo [2 ]
Luo, Ying [3 ]
Chen, YangQuan [2 ]
Li, Donghai [4 ]
机构
[1] Zhengzhou Univ, Sch Elect Engn, Zhengzhou, Peoples R China
[2] Univ Calif Merced, Sch Engn, Mechatron Embedded Syst & Automat MESA Lab, Merced, CA 95343 USA
[3] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan, Peoples R China
[4] Tsinghua Univ, Dept Energy & Power Engn, State Key Lab Power Syst, Beijing, Peoples R China
关键词
Fractional-order [proportional integral derivative] controller; specification constraints; first order plus dead time system; more flat phase; achievable region; PID CONTROLLER; FOPID CONTROLLERS; TUNING RULES; SYSTEMS; PLANTS;
D O I
10.1080/00207179.2021.1992498
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new design methodology for robust fractional-order controllers with more than three parameters for first-order plus dead time systems using the synthesis scheme of the 'more flat phase' idea for a fractional-order controller with [proportional integral derivative] (FO[PID]) structure. The stability region of the FO[PID] controller and the synthesis scheme with the 'more flat phase' idea are illustrated through a simulation example. The corresponding pseudo-codes of the synthesis scheme are also summarised. The implementation and approximation error of the FO[PID] controller are also discussed. Likewise, the superiority of the FO[PID] controller designed with the 'more flat phase' idea is verified by additional simulations and experimental results where the closed-loop system with FO[PID] controller is not sensitive to the variations of the loop gain, ensuring satisfactory control performance. Obtained results show high potential in practical industrial applications.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 60 条
[1]   Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System [J].
Al-Dhaifallah, M. ;
Kanagaraj, N. ;
Nisar, K. S. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
[2]  
Alkahtani BST, 2020, CHAOS SOLITON FRACT, V138, DOI [10.1016/j.chaos.2020.11006, 10.1016/j.chaos.2020.110006]
[3]   Order and parameter identification for a non-integer-order model of an EEG system [J].
Besancon, Gildas ;
Voda, Alina ;
Becq, Guillaume ;
Machado, Mariana Mulinari Pinheiro .
IFAC PAPERSONLINE, 2018, 51 (15) :772-777
[4]   The generalised isodamping approach for robust fractional PID controllers design [J].
Beschi, M. ;
Padula, F. ;
Visioli, A. .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (06) :1157-1164
[5]  
Borghesani C., 1993, QFT TOOLBOX USERS MA
[6]   Frequency specifications regions of fractional-order PI controllers for first order plus time delay processes [J].
Castillo-Garcia, F. J. ;
Feliu-Batlle, V. ;
Rivas-Perez, R. .
JOURNAL OF PROCESS CONTROL, 2013, 23 (04) :598-612
[7]   GAIN MARGINS AND PHASE MARGINS FOR CONTROL-SYSTEMS WITH ADJUSTABLE-PARAMETERS [J].
CHANG, CH ;
HAN, KW .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1990, 13 (03) :404-408
[8]   Fractional-Order Model Predictive Frequency Control of an Islanded Microgrid [J].
Chen, Min-Rong ;
Zeng, Guo-Qiang ;
Dai, Yu-Xing ;
Lu, Kang-Di ;
Bi, Da-Qiang .
ENERGIES, 2019, 12 (01)
[9]  
Chen Y., 2006, 2006 Asia-Pacific Conference on Communications, P1, DOI [10.1109/APCC.2006.255938 Un, DOI 10.1109/APCC.2006.255938UN, 10.3182/20060719-3-PT-4902.00081, DOI 10.3182/20060719-3-PT-4902.00081]
[10]   On the selection of tuning methodology of FOPID controllers for the control of higher order processes [J].
Das, Saptarshi ;
Saha, Suman ;
Das, Shantanu ;
Gupta, Amitava .
ISA TRANSACTIONS, 2011, 50 (03) :376-388