Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes

被引:0
作者
Escobar-Gonzalez, Diego [1 ,2 ]
Villacis, Marcos [3 ,4 ]
Paez-Bimos, Sebastian [3 ,4 ]
Jacome, Gabriel [5 ]
Gonzalez-Vergara, Juan [6 ,7 ]
Encalada, Claudia [1 ]
Vanacker, Veerle [8 ]
机构
[1] EPMAPS Agua Quito, Empresa Publ Metropolitana Agua Potable & Saneamie, Dept Gest Recursos Hidricos, Quito 170509, Ecuador
[2] Univ Tecn Norte UTN, Fac Postgrad, Maestria Ciencias Ingn Gest Recursos Hidricos, Av 17 Julio 5-21 & Gral, Ibarra 100150, Ecuador
[3] Escuela Politec Nacl, Dept Ingn Civil & Ambiental, Quito 170525, Ecuador
[4] Escuela Politec Nacl, Ctr Invest & Estudios Ingn Recursos Hidricos, Quito 170525, Ecuador
[5] Univ Tecn Norte UTN, Fac Ingn Ciencias Agr & Ambientales, Lab Geociencias & Medio Ambiente GEOMA, Carrera Recursos Nat Renovables, Av 17 Julio 5-21 & Gral, Ibarra 100150, Ecuador
[6] Fondo Protecc Agua FONAG, Mariana Jesus N32 & Martin Utreras, Quito 170509, Ecuador
[7] SDAS Researh Grp, Ben Guerir 43150, Morocco
[8] UCLouvain, Earth & Life Inst, Earth & Climate Res, B-1348 Louvain La Neuve, Belgium
关键词
soil moisture; neural networks; transfer learning; paramo; soil water; VOLCANIC ASH SOILS; CLIMATE-CHANGE; VEGETATION; SERVICES; IMPACTS; DROUGHT;
D O I
10.3390/w16060832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of 1 x 10 - 6 < & varepsilon; < 1 x 10 - 3 . For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to 4.77 x 10 - 6 , and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.
引用
收藏
页数:22
相关论文
共 44 条
  • [1] Alpaydin E., 2016, Machine Learning. The New AI
  • [2] Climate Change and Drought: the Soil Moisture Perspective
    Berg, Alexis
    Sheffield, Justin
    [J]. CURRENT CLIMATE CHANGE REPORTS, 2018, 4 (02): : 180 - 191
  • [3] Impacts of forests and forestation on hydrological services in the Andes: A systematic review
    Bonnesoeur, Vivien
    Locatelli, Bruno
    Guariguata, Manuel R.
    Ochoa-Tocachi, Boris F.
    Vanacker, Veerle
    Mao, Zhun
    Stokes, Alexia
    Mathez-Stiefel, Sarah-Lan
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2019, 433 : 569 - 584
  • [4] The Ecuadorian paramo in danger: What we know and what might be learned from northern wetlands
    Brueck, Stefan Alexander
    Torres, Byron Daniel Medina
    Polizeli, Maria de Lourdes Teixeira de Moraes
    [J]. GLOBAL ECOLOGY AND CONSERVATION, 2023, 47
  • [5] Human impact on the hydrology of the Andean paramos
    Buytaert, Wouter
    Celleri, Rolando
    De Bievre, Bert
    Cisneros, Felipe
    Wyseure, Guido
    Deckers, Jozef
    Hofstede, Robert
    [J]. EARTH-SCIENCE REVIEWS, 2006, 79 (1-2) : 53 - 72
  • [6] Potential impacts of climate change on the environmental services of humid tropical alpine regions
    Buytaert, Wouter
    Cuesta-Camacho, Francisco
    Tobon, Conrado
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2011, 20 (01): : 19 - 33
  • [7] Empresa Publica Metropolitana de Agua Potable y Saneamiento (EPMAPS) y Fideicomiso Mercantil Fondo Ambiental para la Proteccion de las Cuencas y Agua (FONAG), 2018, Actualizacion del Plan de Manejo del Area de Conservacion Hidrica Antisana
  • [8] Espinosa J., 2017, World Soils Book Series
  • [9] Fideicomiso Mercantil Fondo Ambiental para la Proteccion de las Cuencas y Agua (FONAG), 2020, Plan estrategico 2021-2025
  • [10] Modeling for the Prediction of Soil Moisture in Litchi Orchard with Deep Long Short-Term Memory
    Gao, Peng
    Qiu, Hongbin
    Lan, Yubin
    Wang, Weixing
    Chen, Wadi
    Han, Xiongzhe
    Lu, Jianqiang
    [J]. AGRICULTURE-BASEL, 2022, 12 (01):