Image Understands Point Cloud: Weakly Supervised 3D Semantic Segmentation via Association Learning

被引:7
|
作者
Sun, Tianfang [1 ]
Zhang, Zhizhong [1 ]
Tan, Xin [1 ,2 ]
Qu, Yanyun [3 ]
Xie, Yuan [1 ,2 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
[2] East China Normal Univ, Chongqing Inst, Chongqing 401333, Peoples R China
[3] Xiamen Univ, Sch Informat, Dept Comp Sci & Technol, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud compression; Three-dimensional displays; Labeling; Laser radar; Annotations; Training; Semantic segmentation; Multimodal; weakly supervised; point cloud semantic segmentation;
D O I
10.1109/TIP.2024.3372449
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised point cloud semantic segmentation methods that require 1% or fewer labels with the aim of realizing almost the same performance as fully supervised approaches have recently attracted extensive research attention. A typical solution in this framework is to use self-training or pseudo-labeling to mine the supervision from the point cloud itself while ignoring the critical information from images. In fact, cameras widely exist in LiDAR scenarios, and this complementary information seems to be highly important for 3D applications. In this paper, we propose a novel cross-modality weakly supervised method for 3D segmentation that incorporates complementary information from unlabeled images. We design a dual-branch network equipped with an active labeling strategy to maximize the power of tiny parts of labels and to directly realize 2D-to-3D knowledge transfer. Afterward, we establish a cross-modal self-training framework, which iterates between parameter updating and pseudolabel estimation. In the training phase, we propose cross-modal association learning to mine complementary supervision from images by reinforcing the cycle consistency between 3D points and 2D superpixels. In the pseudolabel estimation phase, a pseudolabel self-rectification mechanism is derived to filter noisy labels, thus providing more accurate labels for the networks to be fully trained. The extensive experimental results demonstrate that our method even outperforms the state-of-the-art fully supervised competitors with less than 1% actively selected annotations.
引用
收藏
页码:1838 / 1852
页数:15
相关论文
共 50 条
  • [21] A new weakly supervised approach for ALS point cloud semantic segmentation
    Wang, Puzuo
    Yao, Wei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 188 : 237 - 254
  • [22] CPCM: Contextual Point Cloud Modeling for Weakly-supervised Point Cloud Semantic Segmentation
    Liu, Lizhao
    Zhuang, Zhuangwei
    Huang, Shangxin
    Xiao, Xunlong
    Xiang, Tianhang
    Chen, Cen
    Wang, Jingdong
    Tan, Mingkui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18367 - 18376
  • [23] WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration
    Li, Lei
    Fu, Hongbo
    Ovsjanikov, Maks
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (07) : 3368 - 3379
  • [24] Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection
    Unal, Ozan
    Van Gool, Luc
    Dai, Dengxin
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2949 - 2958
  • [25] Class agnostic and specific consistency learning for weakly-supervised point cloud semantic segmentation
    Wu, Junwei
    Sun, Mingjie
    Xu, Haotian
    Jiang, Chenru
    Ma, Wuwei
    Zhang, Quan
    PATTERN RECOGNITION, 2025, 158
  • [26] Bottleneck Identification to Semantic Segmentation of Industrial 3D Point Cloud Scene via Deep Learning
    Cazorla, Romain
    Poinel, Line
    Papadakis, Panagiotis
    Buche, Cedric
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4877 - 4878
  • [27] SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
    Hu, Qingyong
    Yang, Bo
    Fang, Guangchi
    Guo, Yulan
    Leonardis, Ales
    Trigoni, Niki
    Markham, Andrew
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 600 - 619
  • [28] Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation on Point Clouds
    Wei, Jiacheng
    Lin, Guosheng
    Yap, Kim-Hui
    Hung, Tzu-Yi
    Xie, Lihua
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 4383 - 4392
  • [29] Multi-Scale Classification and Contrastive Regularization: Weakly Supervised Large-Scale 3D Point Cloud Semantic Segmentation
    Wang, Jingyi
    He, Jingyang
    Liu, Yu
    Chen, Chen
    Zhang, Maojun
    Tan, Hanlin
    REMOTE SENSING, 2024, 16 (17)
  • [30] Weakly Supervised Semantic Segmentation Via Progressive Patch Learning
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Zhou, Yu
    Wei, Xiaolin
    Ma, Lin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1686 - 1699