Image Understands Point Cloud: Weakly Supervised 3D Semantic Segmentation via Association Learning

被引:7
|
作者
Sun, Tianfang [1 ]
Zhang, Zhizhong [1 ]
Tan, Xin [1 ,2 ]
Qu, Yanyun [3 ]
Xie, Yuan [1 ,2 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200060, Peoples R China
[2] East China Normal Univ, Chongqing Inst, Chongqing 401333, Peoples R China
[3] Xiamen Univ, Sch Informat, Dept Comp Sci & Technol, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud compression; Three-dimensional displays; Labeling; Laser radar; Annotations; Training; Semantic segmentation; Multimodal; weakly supervised; point cloud semantic segmentation;
D O I
10.1109/TIP.2024.3372449
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised point cloud semantic segmentation methods that require 1% or fewer labels with the aim of realizing almost the same performance as fully supervised approaches have recently attracted extensive research attention. A typical solution in this framework is to use self-training or pseudo-labeling to mine the supervision from the point cloud itself while ignoring the critical information from images. In fact, cameras widely exist in LiDAR scenarios, and this complementary information seems to be highly important for 3D applications. In this paper, we propose a novel cross-modality weakly supervised method for 3D segmentation that incorporates complementary information from unlabeled images. We design a dual-branch network equipped with an active labeling strategy to maximize the power of tiny parts of labels and to directly realize 2D-to-3D knowledge transfer. Afterward, we establish a cross-modal self-training framework, which iterates between parameter updating and pseudolabel estimation. In the training phase, we propose cross-modal association learning to mine complementary supervision from images by reinforcing the cycle consistency between 3D points and 2D superpixels. In the pseudolabel estimation phase, a pseudolabel self-rectification mechanism is derived to filter noisy labels, thus providing more accurate labels for the networks to be fully trained. The extensive experimental results demonstrate that our method even outperforms the state-of-the-art fully supervised competitors with less than 1% actively selected annotations.
引用
收藏
页码:1838 / 1852
页数:15
相关论文
共 50 条
  • [11] Image Piece Learning for Weakly Supervised Semantic Segmentation
    Li, Yi
    Guo, Yanqing
    Kao, Yueying
    He, Ran
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (04): : 648 - 659
  • [12] Cross-Cloud Consistency for Weakly Supervised Point Cloud Semantic Segmentation
    Zhang, Yachao
    Lan, Yuxiang
    Xie, Yuan
    Li, Cuihua
    Qu, Yanyun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025,
  • [13] A Depth Image Fusion Network for 3D Point Cloud Semantic Segmentation
    Wang, Zhou
    Jia, Zixi
    Lyu, Ao
    Wang, Yating
    Sun, Changsheng
    Liu, Yongxin
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 849 - 853
  • [14] 3d indoor point cloud semantic segmentation using image and voxel
    Yeom S.-S.
    Ha J.-E.
    Ha, Jong-Eun (jeha@seoultech.ac.kr), 1600, Institute of Control, Robotics and Systems (27): : 1000 - 1007
  • [15] PCL: Point Contrast and Labeling for Weakly Supervised Point Cloud Semantic Segmentation
    Du, Anan
    Zhou, Tianfei
    Pang, Shuchao
    Wu, Qiang
    Zhang, Jian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 8902 - 8914
  • [16] PointMatch: A consistency training framework for weakly supervised semantic segmentation of 3D point clouds
    Wu, Yushuang
    Yan, Zizheng
    Cai, Shengcai
    Li, Guanbin
    Han, Xiaoguang
    Cui, Shuguang
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 427 - 436
  • [17] BSTS: A Weakly-Supervised Method for Semantic Learning of 3D Point Clouds
    Liu, Yan
    Hu, Qingyong
    Guo, Yulan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11386 - 11399
  • [18] AN IMAGE-BASED DEEP LEARNING WORKFLOW FOR 3D HERITAGE POINT CLOUD SEMANTIC SEGMENTATION
    Pellis, E.
    Murtiyoso, A.
    Masiero, A.
    Tucci, G.
    Betti, M.
    Grussenmeyer, P.
    9TH INTERNATIONAL WORKSHOP 3D-ARCH 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, VOL. 46-2, 2022, : 429 - 434
  • [19] Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud
    Zhang, Yachao
    Li, Zonghao
    Xie, Yuan
    Qu, Yanyun
    Li, Cuihua
    Mei, Tao
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3421 - 3429
  • [20] Weakly supervised point cloud semantic segmentation based on scene consistency
    Niu, Yingchun
    Yin, Jianqin
    Qi, Chao
    Geng, Liang
    APPLIED INTELLIGENCE, 2024, 54 (23) : 12439 - 12452